Following the second part (see Fig.1) solves this mixture design problem,as stated in the methodology (see section 2).Pure component solvents and anti-solvents are designed first and then optimal solvent-anti solvent binary mixture is identified.Sinc

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/02 23:41:53
Followingthesecondpart(seeFig.1)solvesthismixturedesignproblem,asstatedinthemethodology(seesection2)

Following the second part (see Fig.1) solves this mixture design problem,as stated in the methodology (see section 2).Pure component solvents and anti-solvents are designed first and then optimal solvent-anti solvent binary mixture is identified.Sinc
Following the second part (see Fig.1) solves this mixture design problem,as stated in the methodology (see section 2).Pure component solvents and anti-solvents are designed first and then optimal solvent-anti solvent binary mixture is identified.Since solvents and anti-solvents perform different roles and hence have different property constraints two molecular design problems need to be formulated and solved.As stated in the methodology the first three sub-problems pertain to pure component design.For the pure component solvent design,the structural constraints are considered in the first sub-problem.In the second sub-problem all feasible molecular structures were solved for the four pure component property constraints of the solvent namely boiling point,melting point,total solubility parameter and hydrogen bonding solubility parameter.Since we do not have mixture property constraints regarding pure solvents we do not need the third sub-problem in the methodology.The same applies to the three sub- problems of the pure component anti-solvent design where anti-solvent property constraints namely boiling point,melting point and solubility parameter are considered.Then the fourth sub-problem as per the methodology is solved where the pure component solvents and anti solvents are verified for the binary miscibility.In this case study the process model constraints are not considered and hence we do not need the final sub-problem.Now the optimal solvent is selected by evaluating the performance index (objective function) of all the binary solvent - anti solvent mixtures that satisfied all the sub-problems.The sub problems have been solved with the ProCAMD toolbox in ICAS (ICAS Documentations,2002).

Following the second part (see Fig.1) solves this mixture design problem,as stated in the methodology (see section 2).Pure component solvents and anti-solvents are designed first and then optimal solvent-anti solvent binary mixture is identified.Sinc
继第二部分(见图.1)解决了这个问题的混合设计,如在规定的方法(见第2节).纯净成分的溶剂和反设计的溶剂,然后再最佳溶剂,反溶剂二元混合物鉴定.
由于溶剂和抗溶剂执行不同的角色,因此有不同的产权约束两种分子设计问题,需要制定和解决.正如在方法前三个子问题属于纯粹的组件设计.对于纯组分溶剂设计,被认为在结构上的限制的第一分边值问题
他们.在第二次问题的所有可行的分子结构,解决了四个纯组分的沸点溶剂财产即限制,溶点,总溶解度参数和氢键溶解度参数.由于我们没有关于纯混合溶剂的财产限制,我们不需要第三
子问题的方法.同样适用于3分的纯组分抗溶剂设计在反溶剂财产的限制问题,即沸点,熔点及溶解度参数的考虑.然后,第四次按问题的解决方法是在纯组分溶剂和抗溶剂
核实的二进制相容性.在这种情况下,研究过程模型的限制,因此不考虑我们不需要最后的子问题.现在,通过选择最佳的溶剂性能评定指标(目标函数的所有二元溶剂) - 反放心的所有子问题溶剂混合物.小组问题已经解决了在ICAS的ProCAMD工具箱(ICAS的文档,2002年).

跟着第二部分(看见 Fig. 1)解决这混合物设计的问题,如同在方法(看见部分2)中表明那样。纯粹成分溶剂和反对溶剂被首先设计然后最适的溶剂反有溶解力二元混合物被辨认出是。自溶剂和反对溶剂履行和不同作用和因此有和不同财产约束以来,二分子的设计的问题应该是制定和解决。当在方法中陈述第一三时,子问题属于纯粹成分设计。为纯粹成分有支付力设计,结构上约束被考虑在第一子问题中。在第二子问题中所有的可行分子的...

全部展开

跟着第二部分(看见 Fig. 1)解决这混合物设计的问题,如同在方法(看见部分2)中表明那样。纯粹成分溶剂和反对溶剂被首先设计然后最适的溶剂反有溶解力二元混合物被辨认出是。自溶剂和反对溶剂履行和不同作用和因此有和不同财产约束以来,二分子的设计的问题应该是制定和解决。当在方法中陈述第一三时,子问题属于纯粹成分设计。为纯粹成分有支付力设计,结构上约束被考虑在第一子问题中。在第二子问题中所有的可行分子的结构被为有支付力就是沸点,熔点,总溶性参数和氢屏蔽接地溶性参数的四纯粹成分财产约束解决。自我们没有混合物财产约束关于纯粹溶剂以来,我们不确实为需要在方法中第三子问题。同样的施加那里就是沸点,熔点和溶性参数的有支付力财产约束有支付力设计,被考虑于纯粹成分的三子问题。那时第四子问题同样地每方法被解决,纯粹成分溶剂和反溶剂在那里被为二元 miscibility 查证。在这个案研究中的过程的模范约束不被考虑和因此我们不确实为需要最后子问题。现在最适的溶剂被通过作为评价所有的二元溶剂的表现索引(宾语功能)-满足所有的子问题的反有溶解力混合物选择。预支的问题已经被用在 ICAS(ICAS 文档,2002)中的 ProCAMD 工具箱解决。

收起