木星的面积由多大?它有多少颗卫星?

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/20 00:08:29
木星的面积由多大?它有多少颗卫星?木星的面积由多大?它有多少颗卫星?木星的面积由多大?它有多少颗卫星?木星目录·木星资料·木星的光环·大红斑·候补的“太阳”·木星的卫星·人类探索木星的情况·《史记·天

木星的面积由多大?它有多少颗卫星?
木星的面积由多大?它有多少颗卫星?

木星的面积由多大?它有多少颗卫星?
木星
目录·木星资料
·木星的光环
·大红斑
·候补的“太阳”
·木星的卫星
·人类探索木星的情况
·《史记·天官书》
·《马王堆帛书·五星占》
木星资料
木星古称岁星,是离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的合质量大2倍(地球的318倍).木星绕太阳公转的周期为4332.589天,约合11.86年.木星(a.k.a. Jove)希腊人称之为 宙斯(众神之王,奥林匹斯山的统治者和罗马国的保护人,它是Cronus(土星的儿子.)
公转轨道: 距太阳 778,330,000 千米 (5.20 天文单位)
行星直径: 142,984 千米 (赤道)
质量: 1.90*10^27千克
木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓.根据伽利略1610年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个发现,也是赞同哥白尼的日心说的有关行星运动的主要依据.

气态行星没有实体表面,它们的气态物质密度只是由深度的变大而不断加大(我们从它们表面相当于1个大气压处开始算它们的半径和直径).我们所看到的通常是大气中云层的顶端,压强比1个大气压略高.

木星由90%的氢和10%的氦(原子数之比, 75/25%的质量比)及微量的甲烷、水、氨水和“石头”组成.这与形成整个太阳系的原始的太阳系星云的组成十分相似.土星有一个类似的组成,但天王星与海王星的组成中,氢和氦的量就少一些了.

我们得到的有关木星内部结构的资料(及其他气态行星)来源很不直接,并有了很长时间的停滞.(来自伽利略号的木星大气数据只探测到了云层下150千米处.)

木星可能有一个石质的内核,相当于10-15个地球的质量.

内核上则是大部分的行星物质集结地,以液态氢的形式存在.这些木星上最普通的形式基础可能只在40亿巴压强下才存在,木星内部就是这种环境(土星也是).液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了).在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源.同样在这一层也可能含有一些氦和微量的冰.

最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处.水、二氧化碳、甲烷及其他一些简单气体分子在此处也有一点儿.
云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物.然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层).但这次证明的地表位置十分不同寻常--基于地球的望远镜观察及更多的来自伽利略号轨道飞船的最近观察提示这次证明所选的区域很可能是那时候木星表面最温暖又是云层最少的地区.

来自伽利略号的大气层数据同样证明那里的水比预计的少得多,原先预计木星大气所包含的氧是目前太阳的两倍(算上充足的氢来生成水),但目前实际集中的比太阳要少.另外一个惊人的消息是大气外层的高温和它的密度.

木星和其他气态行星表面有高速飓风,并被限制在狭小的纬度范围内,在接近纬度的风吹的方向又与其相反.这些带中轻微的化学成分与温度变化造成了多彩的地表带,支配着行星的外貌.光亮的表面带被称作区(zones),暗的叫作带(belts).这些木星上的带子很早就被人们知道了,但带子边界地带的漩涡则由旅行者号飞船第一次发现.伽利略号飞船发回的数据表明表面风速比预料的快得多(大于400英里每小时),并延伸到根所能观察到的一样深的地方,大约向内延伸有数千千米.木星的大气层也被发现相当紊乱,这表明由于它内部的热量使得飓风在大部分急速运动,不像地球只从太阳处获取热量.

木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓.

色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色.我们通过高处云层的洞才能看到低处的云层.

木星表面的大红斑早在300年前就被地球上的观察所知晓(这个发现常归功于卡西尼,或是17世纪的Robert Hooke).大红斑是个长25,000千米,跨度12,000千米的椭圆,总以容纳两个地球.其他较小一些的斑点也已被看到了数十年了.红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷.类似的情况在土星和海王星上也有.目前还不清楚为什么这类结构能持续那么长的一段时间.
木星向外辐射能量,比起从太阳处收到的来说要多.木星内部很热:内核处可能高达20,000开.该热量的产量是由开尔文-赫尔姆霍兹原理生成的(行星的慢速重力压缩).(木星并不是像太阳那样由核反应产生能量,它太小因而内部温度不够引起核反应的条件.)这些内部产生的热量可能很大地引发了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程.土星与海王星在这方面与木星类似,奇怪的是,天王星则不.
木星与气态行星所能达到的最大直径一致.如果组成又有所增加,它将因重力而被压缩,使得全球半径只稍微增加一点儿.一颗恒星变大只能是因为内部的热源(核能)关系,但木星要变成恒星的话,质量起码要再变大80倍.
宇宙飞船发回的考察结果表明,木星有较强的磁场,表面磁场强度达3~14高斯,比地球表面磁场强得多(地球表面磁场强度只有0.3~0.8高斯).木星磁场和地球的一样,是偶极的,磁轴和自转轴之间有 10°8′的倾角.木星的正磁极指的不是北极,而是南极,这与地球的情况正好相反.由于木星磁场与太阳风的相互作用,形成了木星磁层.木星磁层的范围大而且结构复杂,在距离木星140万~700万公里之间的巨大空间都是木星的磁层;而地球的磁层只在距地心7~8公里的范围内.木星的四个大卫星都被木星的磁层所屏蔽,使之免遭太阳风的袭击.地球周围有条称为范艾伦带的辐射带,木星周围也有这样的辐射带.“旅行者1号”还发现木星背向太阳的一面有3万公里长的北极光.1981年初,当“旅行者2号”早已离开木星磁层飞奔土星的途中,曾再次受到木星磁场的影响.由此看来,木星磁尾至少拖长到6000万公里,已达到土星的轨道上.
木星的两极有极光,这似乎是从木卫一上火山喷发出的物质沿着木星的引力线进入木星大气而形成的.木星有光环.光环系统是太阳系巨行星的一个共同特征,主要由小石块和雪团等物质组成.木星的光环很难观测到,它没有土星那么显著壮观,但也可以分成四圈.木星环约有6500公里宽,但厚度不到10公里.
木星的光环
木星的光环较土星为暗(反照率为0.05).它们由许多粒状的岩石质材料组成.
木星有一个同土星般的光环,不过又小又微弱.(右图)它们的发现纯属意料之外,只是由于两个旅行者1号的科学家一再坚持航行10亿千米后,应该去看一下是否有光环存在.其他人都认为发现光环的可能性为零,但事实上它们是存在的.这两个科学家想出的真是一条妙计啊.它们后来被地面上的望远镜拍了照.
木星光环中的粒子可能并不是稳定地存在(由大气层和磁场的作用).这样一来,如果光环要保持形状,它们需被不停地补充.两颗处在光环中公转的小卫星:木卫十六和木卫十七,显而易见是光环资源的最佳候选人.
伽利略号号飞行器对木星大气的探测发现在木星光环和最外层大气层之间另存在了一个强辐射带,大致相当于电离层辐射带的十倍强.惊人的是,新发现的带中含有来自不知何方的高能量氦离子.
1994年7月,苏梅克-利维9号彗星碰撞木星,具有惊人的现象.甚至用业余望远镜都能清楚地观察到表面的现象.碰撞残留的碎片在近一年后还可由哈博望远镜观察到.
在夜空中,木星是空中最亮的一颗星星(仅次于金星,但金星在夜空中往往不可见).四个伽利略的卫星用双筒望远镜可很容易的观察到;木星表面的带子和大红斑可由小型天文望远镜观测.迈克·哈卫的行星寻找图表显示了火星以及其它行星在天空中的位置.越来越多的细节,越来越好的图表将被如灿烂星河这样的天文程序来发现和完成.
过去有人猜测,在木星附近有一个尘埃层或环,但一直未能证实.1979年3月,“旅行者1号”考察木星时,拍摄到木星环的照片,不久,“旅行者2号”又获得了木星环的更多情况,终于证实木星也有光环.木星光环的形状像个薄圆盘,其厚度约为30公里,宽度约为6500公里,离木星12.8万公里.光环分为内环和外环,外环较亮,内环较暗,几乎与木星大气层相接.光环的光谱型为G型,光环也环绕着木星公转,7小时转一圈.木星光环是由许多黑色碎石块构成的,石块直径在数十米到数百米之间.由于黑石块不反射太阳光,因而长期以来一直未被我们发现.
木星有一层厚而浓密的大气层,大气的主要成分是氢,占80%以上,其次是氦,约占18%,其余还有甲烷、氨、碳、氧和水汽等,总含量不足1%.由于木星有较强的内部能源,致使其赤道与两极温差不大,不超过3℃,因此木星上南北风很小,主要是东西风,最大风速达 130~150米/秒.木星大气中充满了稠密活跃的云系.各种颜色的云层像波浪一样在激烈翻腾着.在木星大气中还观测到有闪电和雷暴.由于木星的快速自转,因此能在它的大气中观测到与赤道平行的、明暗交替的带纹,其中的亮带是向上运动的区域,暗纹则是较低和较暗的云.
木星的大红斑位于南纬23°处,东西长4万公里,南北宽1.3万公里.探测器发现,大红斑是一团激烈上升的气流,呈深褐色.这个彩色的气旋以逆时针方向转动.在大红斑中心部分有个小颗粒,是大红斑的核,其大小约几百公里.这个核在周围的反时针漩涡运动中维持不动.大红斑的寿命很长,可维持几百年或更长久.
由于木星离太阳平均距离为7.78亿公里,因此木星的表面温度比地球表面温度低得多.从木星接受太阳辐射计算,其表面有效温度值为-168℃,而地球观测值为-139℃,“先驱者11号”宇宙飞船的探测值为-150℃,均比理论值高,这也说明木星有内部热源.
“先驱者号”探测器对木星考察的结果表明,木星没有固体表面,11是一个流体行星.主要是氢和氦.木星的内部分为木星核和木星幔两层,木星核位于木星中心,主要由铁和硅构成,是固体核,温度达3万K.木星幔位于木星核外,以氢为主要元素组成的厚层,其厚度约为7万公里.木幔外就是木星大气,再向外延伸1000公里,就到云顶.
大红斑
木星表面的大多数特征变化倏忽,但也有些标记具有持久和半持久的特征,其中最显著最持久,也是人们最熟悉的特征要算大红斑了.
大红斑是位于赤道南侧、长达2万多公里、宽约1.1万公里的一个红色卵形区域.从17世纪中叶,人们就开始对它进行时断时续的观测,1879年以后,开始对它进行连连续的记录,并发现它在1879~1882年,1893~1894年,1903~1907年,1911~1914年,1919~1920年,1926~1927年,特别是在1936~1937年,1961~1968年,以及1973~1974年这些年代中,变得显眼和色彩艳丽.在其他时间,显得暗淡,只略微带红,有时只有红斑的轮廓.
大红斑是个什么结构?为什么是红色的?如何能持续这么长的时间?要了解这些问题,仅凭地面观测实在是无能为力的.
按照科学家雷蒙·哈依德的理论,大红斑是位于其下面的某种像山一类的永久特征所造成的大气扰动.但是“先驱者”发现木星表面是流体,完全排除了木星外层具有固态结构表面的可能性,上述理论也就是自然被扬弃了.
“旅行者1号”发回的照片使人清晰地看到,大红斑宛如一个以逆时针方向旋转的巨大漩涡,其浩翰宽阔足以容纳好几个地球.从照片上还可以分辨出一些环状结构.仔细研究后,科学家们认为,在木星的表面覆盖着厚厚的云层,大红斑是耸立于高空、嵌在云层中的强大旋风,或是一团激烈上升的气流所形成的.
在木星上,类似大红斑的特征还有一些.譬如,在大红斑的偏南处,有3个白色卵形结构,它们首次出现于1938年.另外,1972年,地面观测发现木星的北半球上出现一个小红斑,18个月以后“先驱者10号”到达木星时,发现其形状和大小几乎同大红斑相似.再过一年,“先驱者 11号”经过木星时,这个红斑竟踪迹皆无,看来这个红斑只存在了两年左右.
木星上的斑状结构一般持续几个月或几年,它们的共同特点是在北半球作顺时针方向旋转,在南半球作逆时针旋转.气流从中心缓慢地涌出,然后在边缘沉降,遂形成椭圆形状.它们相当于地球上的风暴,不过规模要大得多,持续时间也长得多.
木星云的绚丽多彩,证明木星大气有着十分活跃的化学反应.在探测器拍摄的照片上,可以看到木星大气明暗交错的云带图形.从南极区到北极区依稀可辨17个云区或云带.它们的颜色、亮度均不相同,也许是氨晶体所组成;褐色云带的云层要深些,温度稍高,因而大气向下流动;蓝色部分则显然是顶端云层中的宽洞,通过这些空隙,方可看到晴朗的天空.蓝云的温度最高,红云的温度最低.据判断,大红斑是一个很冷的结构.令人不解的是,如果按平衡状态而言,所有的云彩都应该是白色的,只有当化学平衡被破坏后,才会出现不同的颜色.那么,是什么破坏了化学平衡呢?科学家们推测,可能是荷电粒子、高能光子、闪电,或是沿垂直方向穿过不同温度区域的快速物质运动.
大红斑的橙红色一直使人困惑不解.有人认为是大红斑中上升气流形成的云中放电现象.为此,美国马里兰大学的一位名叫波南贝罗麦的博士做了一个有趣的实验.他在一只长颈瓶中放上木星大气中存在的一些气体,如甲烷、氨、氢等,对这些气体施加电火花作用,结果发现原先无色的气体变成云状物,一种淡红色的物质沉淀在瓶壁上.这个实验为人们解开大红斑颜色之谜似乎提供了某种有益的启示.相当一部分天文学家认为,磷化物可以说明大红斑的颜色.
自从卡西尼发现大红斑以来,到今天已有300多年了,它为什么能持续如此长的时间呢?有人认为木星的大气又密又厚是大红斑长寿的主要原因,但这只是一种猜测.
大红斑和木星上其他卵形结构的长寿,主要包含两个问题:一个是这些斑状结构必须是稳定的,不然它们只能存在几天;另一个就是能源问题,一个稳定涡流如果没有能源维持,很快就会下沉.
候补的“太阳”
木星难道仅仅是行星吗?为什么不能把它看作是颗未来的恒星,看作是正在向恒星方向发展的天体呢?读者也许会惊讶:这样提问题是否太荒唐了?本世纪80年代初,前苏联科学家苏切科夫提出木星也许是颗正在发展中的恒星这种新见解之后,确实遭到了不少非议.但是,苏切科夫的意见也并非“空中楼阁”,毫无依据.他的主要观点是:木星内部在进行热核反应,它有自己的热核能源,应该归到“能自己发热、发光”的恒星类天体里去.
事情真是那样子吗?
木星离太阳比地球远得多,它接受到的太阳辐射也少得多,表面温度理所当然要低得多.根据计算得出的结果,木星表面温度应该是零下168摄氏度.可是,地面观测得出来的温度是零下 139摄氏度,与计算值相差近30摄氏度,这无论如何不可能是由误差造成的.让探测器在木星附近进行测量,准确程度理应更高些.“先驱者11号”于1974年12月飞掠木星时,测得的木星表面温度为零下148摄氏度,仍比理论值高出不少,说明木星有自己的内部热源.
对木星进行红外线测量也反映出类似情况.如果木星内部没有热源,它吸收到的热量和支出的应该达到平衡,地球和水星等类的行星的情况正是这样.木星却不然,它是支大于入,约大1.5~2.0倍,这超支的能量从哪里来呢?很明显,只能由它自己内部的热源予以补贴.
木星是一颗以氢为主要成分的天体,这与我们的地球有很大的差异,而与太阳相似.木星与太阳这两个天体的大气,都包含约90%的氢和约10%的氦,以及很少量的其他气体.关于木星的内部结构,现在建立的模型认为它的表面并非固体状,整个行星处于流体状态.木星的中心部分大概是个固体核,主要由铁和硅组成,那里的温度至少可以有30000度.核的外面是两层氢,先是一层处于液态金属氢状态的氢,接着是一层处于液态分子氢状态的氢;这两层合称为木星幔.再往上,氢以气体状态成为大气的主要成分.
具有如此结构的天体,其中心能否发生热核反应而产生出所需的能量来呢?许多人认为是可疑的,甚至不可能的.况且木星的质量并没有达到太阳质量的0.07.
比起太阳来,木星确实有点“小巫见大巫”.称“霸”其他行星的木星,体积只有太阳的千分之一,质量只及太阳的1/1047,即约0.001个太阳质量,而中心温度也只有太阳的五百分之一.有人认为,这并不妨碍木星内部存在热源,因为它是在木星形成过程中产生并积累起来的.
前苏联学者苏切科夫等的意见是颇为新颖的,他认为木星内部正进行着热核反应,核心的温度高得惊人,至少有28万度,而且还将变得越来越热,释放更多的能量.释放的速度也将进一步加快.换句话说,木星在逐渐变热,最终会变成一颗名副其实的恒星.
我国学者刘金沂对行星亮度的研究,从一个侧面提供了证据.他发现在过去很长的一段历史时期里,水星、金星、火星和土星的亮度都有减小的趋势,唯独木星的亮度在增大.如果前述四行星的亮度减小与所谓的太阳正在收缩、亮度在减弱有关,那么,木星亮度增大的原因一定是在木星本身.刘金沂得出的结论是:在最近2000年中,木星的亮度每千年增大约0.003等.这无异对苏切科夫等的观点作了注释.
此外,太阳不仅每时每刻向外辐射出巨大的能量,同时也以太阳风等形式持续不断地向外抛射各种物质微粒.它们在行星际空间前进时,木星自然会俘获其中相当一部分.这样的话,一方面木星的质量日积月累不断增加,逐渐接近和达到成为一个恒星所必需的最低条件;另一方面,在截获来自太阳的各种粒子时,木星当然也就获得了它们所携带的能量.换言之,太阳以自己的日渐衰弱来促使木星日渐壮大,最后达到两者几乎并驾齐驱的程度,使木星成为恒星.
这样的过程据说大致需要30亿年的时间.那时,现在的太阳系将成为以太阳和木星为两主体的双星系统;也有可能木星在其“成长”的过程中,把一些小天体俘获过来,建立以自己为中心天体的另一个“太阳系”,与仍以现在太阳为中心天体的太阳系,平起平坐.不管是哪种形式的变化,目前太阳系的全部天体,包括大小行星乃至彗星等,都将有较大幅度的变动.
这种大变迁会带来什么后果呢?特别是地球和地球上的人类该怎么办呢?一种观点认为,事物发生变化那是必然的,至于是否像前面提到的那样,木星变成恒星那样的天体,这只是一家之见,何况还有30亿年的漫长岁月呢!
像木星内部结构之类的问题,本来就是一个假说不少、争论颇多的领域,苏切科夫等人的观点只不过使得争论更加热烈而已.在目前的观测水平和理论水平不完善的情况下,像“木星是否正在向恒星方向演变”之类的重大自然科学之谜,不仅现在无法解答,即使是在可以预见到的将来,恐怕也未必能理出个头绪.它无疑将会在很长的一段历史时期里,一直成为科学家们孜孜不倦地探讨的课题.