氧气,氩气的等价热量是多少?他们算能源吗?氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?一、二楼的回答不是我想要的内容,我是想知道,一个企业生产中要消耗氧气和氩气

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/20 20:13:49
氧气,氩气的等价热量是多少?他们算能源吗?氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?一、二楼的回答不是我想要的内容,我是想知道,一个企业生产中要消耗氧气和氩气氧气,氩气的等价热量是多

氧气,氩气的等价热量是多少?他们算能源吗?氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?一、二楼的回答不是我想要的内容,我是想知道,一个企业生产中要消耗氧气和氩气
氧气,氩气的等价热量是多少?他们算能源吗?
氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?
一、二楼的回答不是我想要的内容,
我是想知道,一个企业生产中要消耗氧气和氩气,国家有没有将他们纳入能源消耗,折算成标准煤,然后计算综合能耗?有大师知道吗?

氧气,氩气的等价热量是多少?他们算能源吗?氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?一、二楼的回答不是我想要的内容,我是想知道,一个企业生产中要消耗氧气和氩气
氧气
一种化学元素.化学符号O ,原子序数8 ,原子量15.9994,属周期系ⅥA族.
氧的发现 1774年英国化学家J.普里斯特利用一个大凸透镜将太阳光聚焦后加热氧化汞,制得纯氧,并发现它助燃和帮助呼吸,称之为“脱燃素空气”.瑞典C.W.舍勒用加热氧化汞和其他含氧酸盐制得氧气虽然比普里斯特利还要早一年,但他的论文《关于空气与火的化学论文》直到1777年才发表,但他们二人确属各自独立制得氧.1774年,普里斯特利访问法国,把制氧方法告诉A.-L.拉瓦锡,后者于1775年重复这个实验,把空气中能够帮助呼吸和助燃的气体称为oxygene,这个字来源于希腊文oxygenēs,含义是“酸的形成者”.因此,后世把这三位学者都确认为氧气的发现者.
氧的存在 氧有三种稳定同位素,即氧16、氧17和氧18,其中氧 16 含量占 99.759 % .氧在地壳中的含量为 48.6%,居首位,氧在地球上分布极广,大气中的氧占21%,海洋和江河湖泊中到处都是氧的化合物水,氧在水中占88.8%.地球上还存在着许多含氧酸盐,如土壤中所含的铝硅酸盐,还有硅酸盐、氧化物、碳酸盐的矿物.大气中的氧不断地用于动物的新陈代谢,人体中氧占65%,植物的光合作用能把二氧化碳转变为氧气,使氧得以不断地循环.虽然地球上到处是氧,但氧主要是从空气中提取的,有取之不尽的资源.
物理物理性质: 氧 是 无 色 、无 臭 、无 味 的 气 体 ,熔点-218.4℃ ,沸点-182.962℃ ,气体密度1.429克/升(1.429×10^-3 g/cm^3) ,液态氧是淡蓝色的 .
氧是化学性质活泼的元素 ,除了惰性气体,卤素中的氯、溴、碘以及一些不活泼的金属(如金 、铂 )之外 ,绝大多 数非 金属和金 属 都能直接与 氧化合,但氧可以通过间接的方法与惰性气体氙生成氧化物:
XeF6 + 3H2O=XeO3 + 6HF
同样,氯的氧化物也可以通过间接的方法制得:
2Cl2+2HgO=HgO•HgCl2+Cl2O
在常温下,氧还可以将其他化合物氧化:
2NO+O2=2NO2
氧可以将葡萄糖氧化,这一作用是构成生物体呼吸作用的主要反应:
C6H12O6+6O2=6CO2+6H2O
氧的氧化态为 -2 、- 1、+ 2 . 氧的氧化性仅次于氟,因此,氧和氟发生反应时,表现为+2价,形成氟化氧(F2O).氧与金属元素形成的二元化合物有氧化物、过氧化物、超氧化物.氧分子可以失去一个电子,生成二氧基正离子(),形成O2PtF6等化合物.
氧气的实验室制法有:①氯酸钾的热分
②电解水:
③氧化物热分
④以二氧化锰做催化剂,使过氧化氢分
⑤高锰酸钾的热分解
在宇宙飞船中 ,可利用宇航员 呼出的二氧化碳气体与超氧化钾作用,产生氧气,供宇航员呼吸用.
生产和应用 大规模生产氧气的方法是分馏液态空气,首先将空气压缩,待其膨氧胀后又冷冻为液态空气,由于稀有气体和氮气的沸点都比氧气低,经过分馏,剩下的便是液氧,可贮存在高压钢瓶中.所有的氧化反应和燃烧过程都需要氧,例如炼钢时除硫、磷等杂质,氧和乙炔混合气燃烧时温度高达3500℃,用于钢铁的焊接和切割.玻璃制造、水泥生产、矿物焙烧、烃类加工都需要氧.液氧还用作火箭燃料,它比其他燃料更便宜.在低氧或缺氧的环境中工作的人,如潜水员、宇航员,氧更是维持生命所不可缺少的.但氧的活性状态如、OH以及H2O2等对生物的组织有严重的损坏作用,紫外线对皮肤和眼的损害多与此种作用有关.是空气的组分之一,无色、无嗅、无味.氧气密度比空气大,在标准状况(0℃和大气压强101325帕)下密度为1.429克/升,能溶于水,但溶解度很小,1L水中约溶30mL氧气.在压强为101kPa时,氧气在约-180摄氏度时变为淡蓝色液体,在约-218摄氏度时变成雪花状的淡蓝色固体.
1.氧气能与很多元素直接化合,生成氧化物.
2.氧气是燃烧和动植物呼吸所必需的气体,富氧空气用于医疗和高空飞行,纯氧用于炼钢和切割、焊接金属,液氧用做火箭发动机的氧化剂.
3.生产上应用的氧气由液态空气分馏而得.实验室借含氧盐类(氯酸钾、高锰酸钾等)受热分解来制取氧气.
4.一个氧分子是由两个氧原子组成的 原子半径0.074纳米
氩气
氩气是一种无色、无味的惰性气体,分子量 39.938 ,分子式为 Ar ,在标准状态下,其密度为 1.784kg/m3. 其沸点为-185.7℃
氩是目前工业上应用很广的稀有气体.它的性质十分不活泼,既不能燃烧,也不助燃.在飞机制造、造船、原子能工业和机械工业部门,对特殊金属,例如铝、镁、铜及其合金和不锈钢在焊接时,往往用氩作为焊接保护气,防止焊接件被空气氧化或氮化.
在金属冶炼方面,氧、氩吹炼是生产优质钢的重要措施,每炼1t钢的氩气消耗量为1~3m3.此外,对钛、锆、锗等特殊金属的冶炼,以及电子工业中也需要用氩作保护气.
在空气中含有的0.932%的氩,沸点在氧、氮之间,在空分装置上塔的中部含量最高,叫氩馏分.在分离氧、氮的同时,将氩馏分抽出,进一步分离提纯,也可得到氩副产品.对全低压空分装置,一般可将加工空气中30%~35%的氩作为产品获得(最新流程已可将氩的提取率提高到80%以上);对中压空分装置,由于膨胀空气进下塔,不影响上塔的精馏过程,氩的提取率可达60%左右.但是,小型空分装置总的加工空气量少,所能生产的氩气量有限,是否需要配置提氩装置,要视具体情况确定.
氩气为惰性气体,对人体无直接危害.但是,如果工业使用后,产生的废气则对人体危害很大,会造成矽肺、眼部损坏等情况.
虽然是惰性气体,同时也是窒息性气体,大量吸入会产生窒息.生产场所要通风,并且,从事与氩气有关的技术人员,每年定期进行职业病体检,确保身体健康.
氩本身无毒,但在高浓度时有窒息作用.当空气中氩气浓度高于33%时就有窒息的危险.当氩气浓度超过50%时,出现严重症状,浓度达到75%以上时,能在数分钟内死亡.液氩可以伤皮肤,眼部接触可引起炎症
芬兰科学家合成惰性气体元素氩化合物
新华社伦敦8月25日电(记者王艳红)芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物——氟氩化氢,分子式为HArF.
这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了.惰性气体可广泛应用于工业、医疗、光学应用等领域,合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术.
在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目.因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为“惰性气体元素”.
在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱.如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应.1962年,加拿大化学家首次合成了氙和氟的化合物.此后,氡和氪各自的化合物也出现了.
原子越小,电子所受约束越强,元素的“惰性”也越强,因此合成氦、氖和氩的化合物更加困难.赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢.它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢.科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物.
自19世纪末以来,稀有气体元素不能生成热力学稳定化合物的结论给科学家人为地划定了一个禁区,致使绝大多数化学家不愿再涉猎这一被认为是荒凉贫瘠的不毛之地,关于稀有气体化学性质的研究被忽略了.尽管如此,仍有少数化学家试图合成稀有气体化合物.1932年,前苏联的阿因托波夫(A.R.Antropoff)曾报道,他在液体空气冷却器内,用放电法使氪与氯、溴反应,制得了较氯易挥发的暗红色物质,并认为是氪的卤化物.但当有人采用他的方法重复实验时却未获成功.阿因托波夫就此否定了自己的报道,认为所谓氪的卤化物实际上是氧化氮和卤化氢,并非氪的卤化物.1933年,美国著名化学家鲍林(L.Pauling)通过对离子半径的计算,曾预言可以制得六氟化氙(XeF6)、六氟化氪(KrF6)、氙酸及其盐.扬斯特(D.M.Younst)受阿因托波夫的第一个报道和鲍林预言的启发,用紫外线照射和放电法试图合成氟化氙和氯化氙,均未成功.他在放电法合成氟化氙的实验中将氟和氙按一定比例混合后,在铜电极间施以30000伏的电压,进行火花放电,但未能检验出氟化氙的生成.扬斯特由于对传统观念心有余悸,没有坚持继续进行实验,使一个极有希望的方法半途而废.一系列的失败,致使在以后的30多年中很少有人再涉足这一领域.令人遗憾的是,到了1961年,鲍林也否定了自己原来的预言,认为“氙在化学上是完全不反应的,它无论如何都不能生成通常含有共价键或离子键化合物的能力”.
历史的发展颇具戏剧性,就在鲍林否定其预言的第二年,第一个稀有气体化合物——六氟合铂酸氙(XePtF6)竟奇迹般地出现了,并以它独特的经历和风姿震惊了整个化学界,标志着稀有气体化学的建立,开创了稀有气体化学研究的崭新领域.
在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究.自 1960年以来,文献上报道了数种新的铂族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强.巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:
O2+PtF6→O2PtF6
这是人类第一次制得O+2的盐,证明PtF6是能够氧化氧分子的强氧化剂.巴特列特头脑机敏,善于联想类比和推理.他考虑到O2的第一电离能是1175.7千焦/摩尔,氙的第一电离能是1175.5千焦/摩尔,比氧分子的第一电离能还略低,既然 O2可以被PtF6氧化,那么氙也应能被PtF6氧化.他同时还计算了晶格能,若生成XePtF6,其晶格能只比O2PtF6小41.84千焦/摩尔.这说明XePtF6一旦生成,也应能稳定存在.于是巴特列特根据以上推论,仿照合成O2PtF6的方法,将PtF6的蒸气与等摩尔的氙混合,在室温下竟然轻而易举地得到了一种橙黄色固体XePtF6:
Xe+PtF6→XePtF6
该化合物在室温下稳定,其蒸气压很低.它不溶于非极性溶剂四氯化碳,这说明它可能是离子型化合物.它在真空中加热可以升华,遇水则迅速水解,并逸出气体:
2XePtF6+6H2O→2Xe↑+O2↑+2PtO2+12HF
这样,具有历史意义的第一个含有化学键的“惰性”气体化合物诞生了,从而很好地证明了巴特列特的正确设想.1962年6月,巴特列特在英国Proccedings of the Chemical Society杂志上发表了一篇重要短文,正式向化学界公布了自己的实验报告,一下震动了整个化学界.持续70年之久的关于稀有气体在化学上完全惰性的传统说法,首先从实践上被推翻了.化学家们开始改变了原来的观念,摘掉了冠以稀有气体头上名不副实的“惰性”的帽子,拆除了人为的樊篱,很快形成了一个合成和研究新的稀有气体化合物的热潮,开辟了一个稀有气体化学的新天地.
认识上的障碍一旦拆除,更多的稀有气体化合物很快被陆续合成出来.就在同年8月,柯拉森(H.H.Classen)在加热加压的情况下,以1∶5体积比混合氙与氟时,直接得到了XeF4,年底又制得了XeF2和XeF6.氙的氟化物的直接合成成功,更加激发了化学家合成稀有气体化合物的热情.在此后不长的时间内,人们相继又合成了一系列不同价态的氙氟化合物、氙氟氧化物、氙氧酸盐等,并对其物理化学性质、分子结构和化学键本质进行了广泛的研究和探讨,从而大大丰富和拓宽了稀有气体化学的研究领域.到1963年初,关于氪和氡的一些化合物也陆续被合成出来了.至今,人们已经合成出了数以百计的稀有气体化合物,但却仅限于原子序数较大的氪、氙、氡,至于原子序数较小的氦、氖、氩,目前仍未制得它们的化合物,但有人已从理论上预测了合成这些化合物的可能性.1963年,皮门陶(Pimentaw)等人根据HeF2的电子排布与稳定的HF-2离子相似这一点,提出了利用核反应制备HeF2的3种设想:(1)制取TF-2,再利用氚〔3H(T)〕的β衰变合成HeF2:TF-2→HeF2+β;(2)用热中子辐射LiF,生成HeF2;(3)直接用α粒子轰击固态氟而产生HeF2.但毛姆等人则认为,HeF2和HF-2的电子排布虽然相似,但HF-2 可以看成是一个H-跟两个F原子作用成键,H-的电离能仅为22.44千焦/摩尔,而He的电离能却高达 801.5千焦/摩尔,因此是否存在HeF2,在理论上是值得怀疑的,氦能否形成化合物,至今仍是个不解之谜.
氧和氩一种能源

相对稳定的分子结构,不能算能源,他都都有能量,不用热量来计算。

相对稳定的分子结构,不能算能源,他都都有能量,不用热量来计算。
现在不能啊,也许将来会的啊。因为根据爱因斯坦的相对论,物质其实是有静能量(这种能量可以用E=mc^2计算)这种能量不同与其他所谓的化学能之类,它比较的稳定一般不会发生变化。不好利用。核电站就是利用这部分能量的,即用那几个核反应的式子原理,其实是把原子损失的质量转化为能量了。在现在的技术条件下,这种能量不好用,但在将来也说不定...

全部展开

相对稳定的分子结构,不能算能源,他都都有能量,不用热量来计算。
现在不能啊,也许将来会的啊。因为根据爱因斯坦的相对论,物质其实是有静能量(这种能量可以用E=mc^2计算)这种能量不同与其他所谓的化学能之类,它比较的稳定一般不会发生变化。不好利用。核电站就是利用这部分能量的,即用那几个核反应的式子原理,其实是把原子损失的质量转化为能量了。在现在的技术条件下,这种能量不好用,但在将来也说不定啊 ,
一个企业生产中要消耗氧气和氩气,国家没有将他们纳入能源消耗,折算成标准煤

收起

氧气和氩气算耗能工质(在生产过程中所消耗的不作为原料使用、也不进入产品,在生产或制取时需要直接消耗能源的工作物质),你可以看一下《综合能耗计算通则》里面的概念,4综合能耗计算的能源种类和计算范围,能源种类包括一次能源、二次能源和耗能工质,附录B给出了生产单位耗能工质的耗能量及相应的折标煤系数。...

全部展开

氧气和氩气算耗能工质(在生产过程中所消耗的不作为原料使用、也不进入产品,在生产或制取时需要直接消耗能源的工作物质),你可以看一下《综合能耗计算通则》里面的概念,4综合能耗计算的能源种类和计算范围,能源种类包括一次能源、二次能源和耗能工质,附录B给出了生产单位耗能工质的耗能量及相应的折标煤系数。

收起

氧气,氩气的等价热量是多少?他们算能源吗?氧气,氩气算能源吗?如何折算等价热量?也就是如何折算成标煤?一、二楼的回答不是我想要的内容,我是想知道,一个企业生产中要消耗氧气和氩气 氩气和氧气的比重是多少 氩气和氧气哪个贵,氩气价格是多少 25升的氧气瓶装满气体是多少立方气?比如40升的氧气瓶能装多少立方气?有转算公式吗?氩气、氢气、氮气、二氧化碳、氧气等换算的公式是一样的吗? 请问:氧气、乙炔、氮气、氩气、二氧化碳的密度分别是多少,重量是不是压力乘以密度? 气温和热量的区别 现有工业用氧气、氩气、乙炔、二氧化碳混合气体,请问他们的存放要求,哪些可以放一起, 能源与自然资源的关系是什么?能源属于自然资源吗?怎样用图表示他们的关系? 氩气的密度是多少? 一般情况下,瓶装氧气、乙炔、氩气、氮气、二氧化碳的压力和净重分别是多少?40L的瓶子装满 100升空气中含有多少升的氧气?氧气的质量是多少?(已知氧气的密度1.43g/L) 现在氧气 氮气 乙炔 和氩气的价格是多少?如果是40L瓶装是多少钱一瓶 干洁空气中氮气,氧气,氩气和二氧化碳气体所占的质量百分数是多少 60度的水蒸发与90度的水蒸发,他们吸收的热量相同吗?如果不同的话,吸收的热量是多少,有没有计算公式 氩气能偶尔替代氧气用吗?工作中如果氧气没有了,能用氩气偶尔替代一会儿吗?我们经常用的氧气是用煤气代替乙炔,现在氧气没有能用氩气代替吗? 丙烷气体密度是多少 还有氧气 氩气 氮气 密度各是多少 丙烷气体密度是多少 还有氧气 氩气 氮气 密度各是多少? 页岩气是什么能源