A为什么人会变老?为什么?
来源:学生作业帮助网 编辑:六六作业网 时间:2024/11/26 22:37:35
A为什么人会变老?为什么?
A为什么人会变老?为什么?
A为什么人会变老?为什么?
.年龄大了就会变老,心情不好或精神状态不佳也会容易衰老..哈!
老(Aging or Senesence)这个词意味着随着年龄增加,机体逐渐出现的退行性变化、死亡率上升。衰老的普遍性、内因性、进行性及有害性作为衰老的标准被普遍接受。千百年来,人们一直在探索健康长寿的奥秘,充满对青春长驻、延年益寿的向往。自有史记载以来,我国古代的人们就一直在寻求延年及养生的方法。那么衰老是如何发生的呢?对生物为何衰老即衰老机制的研究则是探索衰老本质的核心问题,同时又是比较复杂、...
全部展开
老(Aging or Senesence)这个词意味着随着年龄增加,机体逐渐出现的退行性变化、死亡率上升。衰老的普遍性、内因性、进行性及有害性作为衰老的标准被普遍接受。千百年来,人们一直在探索健康长寿的奥秘,充满对青春长驻、延年益寿的向往。自有史记载以来,我国古代的人们就一直在寻求延年及养生的方法。那么衰老是如何发生的呢?对生物为何衰老即衰老机制的研究则是探索衰老本质的核心问题,同时又是比较复杂、尚无最后定论的关键所在。人类只有认识了自己为什么会衰老,揭开了衰老之迷,才能有效地防治老年性疾病,推迟老年的进程,使人类最大限度地延长生命。 探索衰老发生的机理既是一个古老的问题,又是一个崭新的科研领域,在医学漫长的历史发展过程中,有人认为总共提出过数百个衰老的假说。祖国医学在抗衰老方面积累了丰富的经验,提出了“阴阳失调说”、“脏腑虚衰说”、“精气神亏耗学说”等等,渗透着对自然界宏观的认识。国外的古代医学家和哲学家也从不同角度解释衰老,提出温热学说、熵学说、磨损学说、自家中毒学说等,对于我们认识衰老起到积极的作用。但因历史条件与科学水平的限制,这些学说有很大的局限性。 随着时代的发展,产生了一系列新的学说,包括差误学说,自由基学说,自身免疫学说,网络学说,端粒酶学说等。它们在原有学说的基础上,有了很大的发展和提高,但是目前这些学说中尚无一个为学术界所公认。衰老理论研究的滞后是抗衰老工作进展缓慢的重要原因,人类寿命大幅度上升需要衰老理论及衰老对策研究的重要发展,本章中介绍一些流行的衰老理论。 (一)中医的精气亏耗学说 我国中医认为精气虚衰导致机体衰老。《素问、金匮真言论》有记载:“夫精者,身之本也。”《灵枢·本神》篇记载:“故生之来谓之精”《灵枢·平人绝古》篇记载:“故神者,水谷之精气也”朱丹溪在《格致余论》中列举了老人各种衰老征象,认为原因在于精血俱耗。宋·陈直认为老人气血渐衰,真阳气少,精血耗竭,神气浮弱。 古代医家认为身体本身活力称之为精,精气是人体维持其器官功能正常运行的动力所在。精气分先天之精与后天之精,前者禀受于父母,形成人生命的原始动力,后者来源于饮食水谷。先天精气与生俱来,继承于父母,不能得到继续补充,是有限的;而后天精气是源于饮食和一些其它活动,可以不断得到补充。按此推理衰老的本质原因是因为先天之精匮乏。 中医的精气亏耗学说所提到的一些宏观运行机制对现代医学的抗衰老理论的研究有一定启发和积极地帮助作用,但是较为抽象且缺乏细胞分子水平的根据。 (二)体细胞突变学说 该学说认为在生物体的一生中,诱发(物理因素如电离辐射、X射线、化学因素及生物学因素等)和自发的突变破坏了细胞的基因和染色体,这种突变积累到一定程度导致细胞功能下降,达到临界值后,细胞即发生死亡。支持该学说的证据有:X线照射能够加速小鼠的老化,短命小鼠的染色体畸变率较长命小鼠为高,老年人染色体畸变率较高;有人研究了转基因动物在衰老过程中出现的自发突变的频率和类型,也为该学说提供了一定的依据。 然而,该学说也有解释不了的事实,如衰老究竟是损伤增加还是染色体修复能力降低,该学说无法解释;另外,现代生物学证明基因的突变率为10-6-10-9 /细胞/基因位点/代,如此低的突变率不会造成细胞的全群死亡,而按该学说要求细胞应有异常高的突变率;衰老是突变造成的,转化细胞在体外能持续生长,就此而言,转化细胞应不发生突变,事实却并非如此。 (三)自由基学说 衰老的自由基学说是Denham Harman在1956年提出的,认为衰老过程中的退行性变化是由于细胞正常代谢过程中产生的自由基的有害作用造成的。生物体的衰老过程是机体的组织细胞不断产生的自由基积累结果,自由基可以引起DNA损伤从而导致突变,诱发肿瘤形成。自由基是正常代谢的中间产物,其反应能力很强,可使细胞中的多种物质发生氧化,损害生物膜。还能够使蛋白质、核酸等大分子交联,影响其正常功能。 支持该学说的证据主要来自一些体内和体外实验。包括种间比较、饮食限制、与年龄相关的氧化压力现象测定、给予动物抗氧化饮食和药物处理;体外实验主要包括对体外二倍体成纤维细胞氧压力与代谢作用的观察、氧压力与倍增能力及抗氧化剂对细胞寿命的影响等。该学说的观点可以对一些实验现象加以解释如:自由基抑制剂及抗氧化剂可以延长细胞和动物的寿命。体内自由基防御能力随年龄的增长而减弱。脊椎动物寿命长的,体内的氧自由基产率低。但是,自由基学说尚未提出自由基氧化反应及其产物是引发衰老直接原因的实验依据,也没有说明什么因子导致老年人自由基清除能力下降,为什么转化细胞可以不衰老,生殖细胞何以能世代相传维持种系存在这些问题。而且,自由基是新陈代谢的次级产物,不大可能是衰老的原发性原因。 (四)交联学说 该学说由Bjorksten于1963年提出的,后经Verzar加以发展。其主要论点是:机体中蛋白质,核酸等大分子可以通过共价交叉结合,形成巨大分子。这些巨大分子难以酶解,堆积在细胞内,干扰细胞的正常功能。这种交联反应可发生于细胞核DNA上,也可以发生在细胞外的蛋白胶原纤维中。目前有一些证据支持交联学说。皮肤胶原的可提取性以及胶原酶对其消化作用随增龄降低,而其热稳定性和抗张强度则随年龄的增高而增强了;大鼠尾腱上的条纹数目及所具备的热收缩力随年龄的增高而增加,溶解度却随年龄增高而降低。这些结果表明,在年老时胶原的多肽链发生了交联,并日益增多。该学说与自由基学说有类似之处,亦不能说明衰老发生的根本机制。 (五)差误成灾学说 差误成灾学说是由Orgel明确提出的,认为在DNA复制,转录和翻译中发生误差,这种误差可以不断扩大,造成细胞衰老、死亡。如DNA转录mRNA的过程发生微小的差异,带有该微小差异的mRNA会翻译出进一步偏离的蛋白质,该蛋白质如果属于DNA聚合酶会合成差异程度更大的DNA,这样的差错经过每一次信息传递都扩大一些,形成恶性循环,使细胞内积累许多差错分子造成灾难,细胞正常功能不能发挥,致使细胞衰老、死亡。 对于这种假说,已有大量的研究和报道,各抒己见,褒贬不一。Lewis和Tarrant发表了他们认为支持该学说的资料:合成生物大分子所需的酶存在年龄依赖性变化,如小鼠肝DNA多聚酶、人体成纤维细胞DNA多聚酶合成的正确性都随着年龄的增加而降低;同时DNA的修复速度也下降。 然而,与之不符的结果有在亚致死浓度的氨基酸类似物中生长的二倍体细胞寿命并不缩短。假如衰老是因为蛋白质合成时的差错引起的,那么在上述不利的情况下,能够加快这一过程的因素将会缩短培养细胞的寿命,事实却并非如此。Gupta发现诱变剂连续处理几个周期并不会缩短体外培养的成纤维细胞的寿命;另外,肿瘤细胞系可以无限制的传代而保存下来,似乎也与差误假说不符。 学者们包括Hayflick也对差误学说提出了疑问,John Holland和Hayflick比较了幼年和老年培养细胞中的病毒产生,在病毒致病性、病毒蛋白质组成等方面未观察到差别,病毒是利用细胞机器来合成蛋白质,这个结果就意味着老年细胞中仍然可以维持这一机器的精确性;另外也未发现老年人和动物体内蛋白质的氨基酸组成与其年轻时有明显区别。 (六)生物钟学说 又称为遗传程序学说,该学说认为衰老是生命周期中已经安排好的程序,它只不过是整个生长与分化过程中的一个方面,每一物种都有一份遗传上的“时间计划”,即靠生物钟或类似的机制按照在大自然进化中生存的利害得失发生。特定的遗传信息按时激活退变过程,退变过程逐渐展开,最终导致衰老和死亡。 一些学者认为,遗传程序导致衰老是进化的需要。当个体生存到一定期限而又没有进化上的益处时,就会开始失去进化力的控制而走向衰老。已有一些细胞学和分子生物学的证据,在生物寿命统计方面也得到了初步验证。 生物钟现象在生命的早期表现很明显,如尾的退化等。在生命的早期退化掉一定的器官和细胞是形体发生的需要。衰老不应该被看作是机体一生中的某个孤立的时期,分化、发育和衰老是同一事件的不同侧面。如果衰老发生仅是由于失去进化力的控制,那必然要出现遗传的多形性,即不衰老的变种,事实上尚未发现有这样的变种。可以推论的是衰老不是基因控制的主动事件,也可以说不存在程序控制的衰老基因。另外生物钟学说在分子基础方面的解释也不够。
收起
(十二)网络学说 20世纪90年代由Kowald等人提出网络学说。该学说综合了线粒体缺陷,畸变蛋白和自由基对衰老的影响,包括抗氧化酶和蛋白溶解清除剂的保护作用。其中的诸多数学模型概括了该学说的四个特征:1)缺陷线粒体的积累;2)蛋白质合成过程产生畸变蛋白对机体的影响;3)氧自由基的损伤;4)蛋白水解酶对蛋白质的“清道”作用减弱。这四个组分间存在彼此的作用,互为因果。如自由基能够破坏酶活性、增加异...
全部展开
(十二)网络学说 20世纪90年代由Kowald等人提出网络学说。该学说综合了线粒体缺陷,畸变蛋白和自由基对衰老的影响,包括抗氧化酶和蛋白溶解清除剂的保护作用。其中的诸多数学模型概括了该学说的四个特征:1)缺陷线粒体的积累;2)蛋白质合成过程产生畸变蛋白对机体的影响;3)氧自由基的损伤;4)蛋白水解酶对蛋白质的“清道”作用减弱。这四个组分间存在彼此的作用,互为因果。如自由基能够破坏酶活性、增加异常蛋白的量及损伤线粒体降低其功能,反过来,受损的线粒体更有可能产生出更多的自由基。 网络这个新颖的学说综合了衰老的多个假说,与以前的衰老学说相比更能够对众多的老龄变化予以较为合理的解释,并且将多种可能互相作用的机制一体化,弥补了以往单一学说(单一理论认为每一个衰老的可能机制都是一个独立的过程)的片面和不足,网络学说证实和解释了许多与年龄相关的发现和实验,如无活性蛋白增加,蛋白质半寿期随龄的显著上升,线粒体数目随龄下降,受损线粒体增加,线粒体平均能量产生减少等等。 网络学说认为是上述组分的交互作用及错误放大导致了衰老,那么又是什么原因导致了这些组分量和质的改变呢?细胞核外的DNA只占整个DNA的极小一部分,而且大量的线粒体蛋白质的基因是在细胞核内,线粒体改变是因或果呢? (十三)衰老基因学说 首先报道诱导永生细胞衰老实验的是Sugawara等人,用正常细胞和永生仓鼠细胞融合后,出现衰老表现。将人1号染色体导入永生仓鼠细胞则细胞出现衰老迹象。Sugawara等认为1号染色体上携有仓鼠永生细胞系的衰老基因。有人说细胞衰老是被激活的或在细胞增殖后期作用显著的基因控制的结果,由此认同了衰老基因的存在,缺失这些基因使细胞发生永生化。正常细胞和肿瘤细胞杂交后,杂交细胞表现衰老,说明了正常细胞能够弥补肿瘤细胞在衰老程序中的缺陷。人们发现使细胞衰老的染色体似乎也有特异性,如对于同一种细胞导入2号染色体,细胞出现衰老表现,导入3、6、7、9、11或12号染色体细胞仍能继续生长,也没有形态的改变。 导入染色体可以使细胞从永生向衰老转变,不能就认为其上一定携有衰老基因,任何引起细胞功能下降的因素都可以导致衰老。从进化上讲,多细胞生物也没有必要强制性存在衰老基因。 (十四)基因阻遏平衡论 一种衰老学说——基因阻遏平衡论,于1992年由吕占军教授提出,以后又作了部分补充。严格说该学说属于一种生命学说,因其不仅解释衰老也解释肿瘤和分化。详见第八章和第九章。该学说同时考虑到衰老、分化和肿瘤现象,考虑到基因结构及组成,生物进化等多方面的问题,但其中的许多论点和直接实验依据尚在进一步地验证和提供过程中。 (十五)衰老的代谢产物学说 脂褐素是某些细胞胞质内形成的不溶性颗粒,广泛存在于动物体内,其含量一般随年龄增长而增多,特别是在老年神经细胞及心肌细胞内大量堆积。某些外界因素(如维生素缺乏)可以促使它的沉积。一些学者提出,脂褐素的沉积扰乱了细胞的有序结构,从而影响细胞的正常功能。但也有人认为,脂褐素的存在反应了机体旺盛的功能状态,是正常细胞代谢的无害产物。因此,脂褐素与衰老的关系尚无定论。 大多数老年动物的细胞中有色素颗粒的沉积,通常称为老年色素或脂褐质。它的出现是细胞衰老,功能减退的表现,也是老年人的共同现象。总的来说脂褐质对细胞代谢的影响几乎一无所知。色素的形成可能与溶酶的作用有关,但色素本身未必仍有溶酶活性。神经细胞中脂褐质的沉积对老年人精神障碍的关系以及药物治疗是否能清除此种色素,改善患者病状等都需要进一步研究。 (十六)内分泌学说 内分泌系统主要通过激素来调节动物的生长发育与衰老过程。老化过程中,内分泌功能的改变主要包括:①靶细胞受体减少且反应性减退;②激素降解率减低,使得血液中该激素浓度相应升高,通过反馈机制导致该激素分泌减少;③酶合成的神经内分泌调节功能减退。还有人提出,丘脑垂体轴的功能衰退可以影响其它内分泌腺的功能。上述变化都可能加速衰老过程。
收起
(八)剩余信息学说 Medvedev是该学说的主要发起人。在发育成熟的体细胞中,DNA分子中所含遗传信息仅0.2-0.4%发挥作用,其余部分则被阻遏。一些确定的基因、作用因子以及DNA分子上的其它区域有着选择性的重复,表现为剩余的信息。一个基因的一个拷贝缺陷或失活,其余拷贝则被激活,直到最后一份拷贝用尽,这时由于缺失某些基因产物,细胞的正常功能就不能很好发挥,导致细胞衰老。Medvedev认为不...
全部展开
(八)剩余信息学说 Medvedev是该学说的主要发起人。在发育成熟的体细胞中,DNA分子中所含遗传信息仅0.2-0.4%发挥作用,其余部分则被阻遏。一些确定的基因、作用因子以及DNA分子上的其它区域有着选择性的重复,表现为剩余的信息。一个基因的一个拷贝缺陷或失活,其余拷贝则被激活,直到最后一份拷贝用尽,这时由于缺失某些基因产物,细胞的正常功能就不能很好发挥,导致细胞衰老。Medvedev认为不同物种的寿命有可能是基因顺序重复程度的函数。长寿物种应该比短寿物种有更多的剩余信息。 对不同物种DNA以及rRNA、tRNA研究表明,哺乳动物寿命与基因的重复顺序之间并没有特定的联系。但是,少数比较重要的只有几个拷贝数的基因,如血红蛋白基因和组蛋白基因,在寿命长短方面应可能起着决定性的作用。为研究这种可能性,有人用DNA·RNA的相关分析率分析不同的哺乳动物的寿命和mRNA重复序列的联系,结果显示它们之间有肯定的联系,但由于在分析这组数据中用到的假设太多,结论尚无高度可信性。如果基因的失活只发生于调节基因,而不是结构基因,应说明为何结构基因不易失活。如发生在结构基因则细胞的同种异型标志则可能随年龄而发生转换。但实际上同种异型标志往往持续终生。另外染色体的多少,每个细胞的DNA含量与动物寿命无明确的关系。如蝗虫DNA含量可达19uug/核,而人仅为7.3uug/核,然而人的寿命比蝗虫长得多。 (九)衰老的免疫学说 衰老的免疫学说可以分为两种观点:第一,免疫功能的衰老是造成机体衰老的原因;第二,自身免疫学说,认为与自身抗体有关的自身免疫在导致衰老的过程中起着决定性的作用。衰老并非是细胞死亡和脱落的被动过程,而是最为积极地自身破坏过程。 从衰老的免疫学说可以看出免疫功能的强弱似乎与个体的寿命息息相关,迄今的研究表明机体在衰老的过程中确实伴有免疫功能的重要改变: 1、个体水平 伴随衰老免疫功能改变的特点是对外源性抗原的免疫应答降低,而对自身抗原免疫应答增强。据Whittingham报告,用抗原免疫后,老年人抗体效价比年轻人呈现有意义下降。此外随衰老自身抗体的检出率升高。细胞免疫也随增龄而降低。 2、器官、组织水平 人类的胸腺出生后随着年龄的增长逐渐变大,13-14岁时达到顶峰,之后开始萎缩,功能退化,25岁以后明显缩小。新生动物切除胸腺后即丧失免疫功能,年轻动物切除胸腺后,免疫功能逐渐衰退,抗体形成及移植物抗宿主反应下降。 3、细胞、分子水平 老年动物和人的T细胞功能下降,数量也减少。随年龄的增长,机体对有丝分裂原刀豆蛋白A(con A)、植物血凝素(PHA)及抗CD3抗体的增殖反应能力下降。这是衰老的免疫学特征之一。伴随老化,细胞因子的分泌有明显的改变。在T细胞的增殖中IL-2的产生和IL-2受体的出现是很重要的,老年人IL-2产生减少,IL-2受体,特别是高亲和性受体的出现亦减少。 自身免疫观点认为免疫系统任何水平上的失控都可以导致自身免疫反应的过高表达,也从而表现出许多衰老加速的证据。 免疫系统控制衰老也有许多相反的证据。小鼠中有一种长命的近交品系—C57BL/6,它的抗核抗体的比例及胸腺细胞毒抗体的含量相对较高,但未显示较高程度的免疫病理损伤。裸鼠是一种先天性无胸腺无毛综合症的小鼠,其T细胞免疫功能极度缺乏,以至于可以接受同种异体甚至异种移植物,这种小鼠如果饲养在普通条件下可致早期死亡,但是在无菌条件下饲养其寿命不低于正常鼠。如果在通常的饲养条件下切除新生小鼠的胸腺,死于3月龄左右,若将其置于无菌的环境中,大多数可以活得更长久。可见免疫系统虽然对生存期可以产生影响,但并非决定因素。免疫学说将免疫系统说成是衰老的领步者及根本原因所在,然而至今尚无明显的理由说明免疫系统随龄退化的原因,免疫系统的增龄改变也均是衰老导致的多种效应的表现,应该视为整体衰老的一部分,而不是衰老的始动原因。 (十)转座因子假说 Macieira-Coelho提出转座因子假说来解释衰老。认为衰老可能是转座因子从染色体的一个部分转到另一个部分,随后造成所需功能失活。这个模型与其它转座变化致癌、发育以及免疫学中的作用是一致的。在培养细胞中观察到的变异型或许提示转座子在衰老现象中可能具有的重要作用。但这种变化是衰老的因或果还不能确定,该假说尚缺乏可靠的证据。 (十一)端粒学说 端粒学说由Olovnikov提出,认为细胞在每次分裂过程中都会由于DNA聚合酶功能障碍而不能完全复制它们的染色体,因此最后复制DNA序列可能会丢失,最终造成细胞衰老死亡。 端粒是真核生物染色体末端由许多简单重复序列和相关蛋白组成的复合结构,具有维持染色体结构完整性和解决其末端复制难题的作用。端粒酶是一种逆转录酶,由RNA和蛋白质组成,是以自身RNA为模板,合成端粒重复序列,加到新合成DNA链末端。在人体内端粒酶出现在大多数的胚胎组织、生殖细胞、炎性细胞、更新组织的增生细胞以及肿瘤细胞中。正因如此,细胞每有丝分裂一次,就有一段端粒序列丢失,当端粒长度缩短到一定程度,会使细胞停止分裂,导致衰老与死亡。 大量实验说明端粒、端粒酶活性与细胞衰老及永生有着一定的联系。第一个提供衰老细胞中端粒缩短的直接证据是来自对体外培养成纤维细胞的观察,通过对不同年龄供体成纤维细胞端粒长度与年龄及有丝分裂能力的关系观察到随着增龄,端粒的长度逐渐变短,有丝分裂的能力明显渐渐变弱;Hastie发现结肠端粒限制性片段的长度随供体年龄增加逐渐缩短,平均每年丢失33bp的重复序列;植物中不完整的染色体在受精作用中得以修复,而不能在已经分化的组织中修复,这在较为高等的真核生物中也证实了体细胞中端粒酶的活性受抑制;精子的端粒要比体细胞长,体细胞缺失端粒酶活性就会逐渐衰老,而生殖细胞系的端粒却可以维持其长度;转化细胞能够通过端粒酶的活性完全复制端粒以得永生。 但是许多问题用端粒学说还不能解释。体细胞端粒长度与有丝分裂能力呈正比,这一点实验已经证实了,而不同的体细胞其有丝分裂能力是不尽相同的,胃肠黏膜细胞的分裂增殖速度就比较快,神经细胞分裂的速度就比较慢。曾有人就不同年龄供体角膜内皮细胞的端粒长度进行研究发现角膜内皮细胞内端粒长度长期维持在一个较高的水平,而端粒酶却不表达。另外,Kippling发现,鼠的端粒比人类长近5-10倍,寿命却比人类短的多。这些都提示体细胞端粒长度与个体的寿命及不同组织器官的预期寿命并非一致。生殖细胞的端粒酶活性长期维持较高的水平却不会象肿瘤那样无限制分裂繁殖;端粒长度由端粒酶控制,那何种因素控制端粒酶呢?生殖细胞内端粒酶活性较高,为什么体细胞中没有较高的端粒酶活性。看来端粒的长度缩短是衰老的原因还是结果尚需进一步研究。
收起