望远镜的有效观测距离怎么定位的?
来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/23 20:35:16
望远镜的有效观测距离怎么定位的?
望远镜的有效观测距离怎么定位的?
望远镜的有效观测距离怎么定位的?
一、折射望远镜,是用透镜作物镜的望远镜.分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜.因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜.其中以双透镜物镜应用最普遍.它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱
在满足一定设计条件时,还可消去球差和彗差.由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大.口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜 ,留有一定间隙未胶合的称双分离物镜 .为了增大相对口径和视场,可采用多透镜物镜组.对于伽利略望远镜来说,结构非常简单,光能损失少.镜筒短,很轻便.而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜.对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像.一般的折射望远镜都是采用开普勒结构.由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式
( 以下为详细介绍)
开普勒望远镜
原理由两个凸透镜构成.由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构.但这种结构成像是倒立的,所以要在中间增加正像系统.
正像系统分为两类:棱镜正像系统和透镜正像系统.我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统.这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量.透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统.
历史
1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜.
1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜.他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜.伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代.
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜.现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式.
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长.所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终.
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜.从此,消色差折射望远镜完全取代了长镜身望远镜.但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜.
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮.世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜.
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作.但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害.而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现.这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点.
二、反射望远镜,是用凹面反射镜作物镜的望远镜.可分为牛顿望远镜.卡塞格林望远镜等几种类型.反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差.但为了减小其它像差的影响,可用视场较小.对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制.磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究.反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此目前口径大于1.34米的光学望远镜全部是反射望远镜.一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统.这样,一架望远镜便可获得几种不同的相对口径和视场.反射望远镜主要用于天体物理方面的工作.
历史
第一架反射式望远镜诞生于1668年.牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜.他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜.这种系统称为牛顿式反射望远镜.它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功.
詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜.这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子.
1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜.这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短.
卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异.由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体.因此,卡塞格林式望远镜得到了非常广泛的应用.
赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架.赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧.
在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵.1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光.这样,就使得制造更好、更大的反射式望远镜成为可能.
1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的.天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果.
二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情.1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜.从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识.正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了".在1976年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话.
反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作.但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.
三、折反射望远镜,是在球面反射镜的基础上,再加入用于校正像差的折射元件,可以避免困难的大型非球面加工,又能获得良好的像质量.比较著名的有施密特望远镜
它在球面反射镜的球心位置处放置一施密特校正板.它是一个面是平面,另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差.还有一种马克苏托夫望远镜
在球面反射镜前面加一个弯月型透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差.及这两种望远镜的衍生型,如超施密特望远镜,贝克―努恩照相机等.在折反射望远镜中,由反射镜成像,折射镜用于校正像差.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.小型目视望远镜若采用折反射卡塞格林系统,镜筒可非常短小.
历史
折反射式望远镜最早出现于1814年.1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出.施密特望远镜已经成了天文观测的重要工具.
1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大.它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些.
由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.
射电望远镜
探测天体射电辐射的基本设备.可以测量天体射电的强度、频谱及偏振等量.通常,由天线、接收机和终端设备3部分构成.天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来.表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力.射电望远镜通常要求具有高空间分辨率和高灵敏度.根据天线总体结构的不同,射电望远镜可分为连续孔径和非连续孔径两大类,前者的主要代表是采用单盘抛物面天线的经典式射电望远镜,后者是以干涉技术为基础的各种组合天线系统.20世纪60年代产生了两种新型的非连续孔径射电望远镜——甚长基线干涉仪和综合孔径射电望远镜,前者具有极高的空间分辨率,后者能获得清晰的射电图像.世界上最大的可跟踪型经典式射电望远镜其抛物面天线直径长达100米,安装在德国马克斯·普朗克射电天文研究所;世界上最大的非连续孔径射电望远镜是甚大天线阵,安装在美国国立射电天文台.
1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人KG·杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰.经过仔细分析,他在1932年发表的文章中断言:这是来自银河中射电辐射.由此,杨斯基开创了用射电波研究天体的新纪元.当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的“扇形”方向束.此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史.
自从杨斯基宣布接收到银河的射电信号后,美国人G·雷伯潜心试制射电望远镜,终于在1937年制造成功.这是一架在第二次世界大战以前全世界独一无二的抛物面型射电望远镜.它的抛物面天线直径为9.45米,在1.87米波长取得了12度的“铅笔形”方向束,并测到了太阳以及其它一些天体发出的无线电波.因此,雷伯被称为是抛物面型射电望远镜的首创者.
射电望远镜是观测和研究来自天体的射电波的基本设备,它包括:收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录,处理和显示系统等等.射电望远镜的基本原理和光学反射望远镜相信,投射来的电磁波被一精确镜面反射后,同相到达公共焦点.用旋转抛物面作镜面易于实现同相聚集.因此,射电望远镜的天线大多是抛物面.
射电观测是在很宽的频率范围内进行,检测和信息处理的射电技术又较光学波希灵活多样,所以,射电望远镜种类更多,分类方法多种多样.例如按接收天线的形状可分为抛物面、抛物柱面、球面、抛物面截带、喇、螺旋、行波、天线等射电望远镜;按方向束形状可分为铅笔束、扇束、多束等射电望远镜;按观测目的可分为测绘、定位、定标、偏振、频谱、日象等射电望远镜;按工作类型又可分为全功率、扫频、快速成像等类型的射电望远镜.
空间望远镜
在地球大气外进行天文观测的大望远镜.由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外 、近紫外观测.但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本.第一架空间望远镜又称哈勃望远镜 ,于1990年4月24日由美国发现号航天飞机送上离地面600千米的轨道 .其整体呈圆柱型,长13米,直径4米 ,前端是望远镜部分 ,后半是辅助器械,总重约11吨.该望远镜的有效口径为2.4米 ,焦距57.6米 ,观测波长从紫外的120纳米到红外的1200纳米 ,造价15亿美元 .原设计的分辨率为0.005 ,为地面大望远镜的100倍 .但由于制造中的一个小疏忽 ,直至上天后才发现该仪器有较大的球差,以致严重影响了观测的质量.1993年12月2~13日,美国奋进号航天飞机载着7名宇航员成功地为“哈勃”更换了11个部件,完成了修复工作,开创了人类在太空修复大型航天器的历史.修复成功的哈勃望远镜在10年内将不断提供有关宇宙深处的信息 .1991 年4月美国又发射了第二架空间望远镜,这是一个观测γ射线的装置,总重17吨,功耗1.52瓦,信号传输率为17000比特/秒 ,上面载有4组探测器,角分辨率为5′~10′.其寿命2年左右.
双子望远镜
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施.它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测.其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限.
太阳望远镜
日冕是太阳周围一圈薄薄的、暗弱的外层大气,它的结构复杂,只有在日全食发生的短暂时间内,才能欣赏到,因为 天空的光总是从四面八方散射或漫射到望远镜内.
1930年第一架由法国天文学家李奥研制的日冕仪诞生了,这种仪器能够有效地遮掉太阳,散射光极小,因此可以在太阳光普照的任何日里,成功地拍摄日冕照片.从此以后,世界观测日冕逐渐兴起.
日冕仪只是太阳望远镜的一种,20世纪以来,由于实际观测的需要,出现了各种太阳望远镜,如色球望远镜、太阳塔、组合太阳望远镜和真空太阳望远镜等.
红外望远镜
红外望远镜(infrared telescope)接收天体的红外辐射的望远镜.外形结构与光学镜大同小异,有的可兼作红外观测和光学观测.但作红外观测时其终端设备与光学观测截然不同,需采用调制技术来抑制背景干扰,并要用干涉法来提高其分辨本领.红外观测成像也与光学图像大相径庭.由于地球大气对红外线仅有7个狭窄的“窗口”,所以红外望远镜常置于高山区域.世界上较好的地面红外望远镜大多集中安装在美国夏威夷的莫纳克亚,是世界红外天文的研究中心.1991年建成的凯克望远镜是最大的红外望远镜,它的口径为10米,可兼作光学、红外两用.此外还可把红外望远镜装于高空气球上,气球上的红外望远镜的最大口径为1米,但效果却可与地面一些口径更大的红外望远镜相当.
数码望远镜
数码望远镜(Instant Replay) ——高性能数码成像望远镜被主流科技媒体评为“百项科技创新”之一
Bushnell数码望远镜是一款具有双重功能,同时兼具最新技术和出色性能的望远镜产品.此款产品可以记录30秒的视频影像,使用者可以很方便地通过LCD液晶显示屏记录并在回味生活中的精彩片断.当然,用户也可以选择拍摄高画质的数码照片来保存人生历程中经历的众多难忘瞬间.在美国,此款产品广受体育运动教练员、球探、猎鸟人、野生动物观察员、狩猎爱好者以及任何一个摄影、摄像爱好者的青睐.有了Bushnell数码望远镜,您还可以轻松地预览、下载、编辑和保存您最爱的影视片段及剧照.强大的功能、简单易学的操作方法、未来的可扩展性,Bushnell数码望远镜树立了同类产品中卓越性能的标杆.
马克苏托夫望远镜
【中文词条】马克苏托夫望远镜
【外文词条】Maksutov telescope
【作者】杨世杰
一种折反射望远镜,1940年初为苏联光学家马克苏托夫所发明,因此得名.荷兰光学家包沃尔斯也几乎于同时独立地发明了类似的系统,所以有时也称为马克苏托夫-包沃尔斯系统.
马克苏托夫望远镜的光学系统和施密特望远镜类似,是由一个凹球面反射镜和加在前面的一块改正球差的透镜组成的.改正透镜是球面的,它的两个表面的曲率半径相差不大,但有相当大的曲率和厚度,透镜呈弯月形,所以,这种系统有时也称为弯月镜系统.适当选择透镜两面的曲率半径和厚度,可以使弯月透镜产生足以补偿凹球面镜的球差,同时又满足消色差条件.在整个系统中适当调节弯月透镜与球面镜之间的距离,就能够对彗差进行校正:马克苏托夫望远镜光学系统的像散很小,但场曲比较大,所以必须采用和焦面相符合的曲面底片.弯月透镜第二面的中央部分可磨成曲率半径更长的球面(也可以是一个胶合上去的镜片),构成具有所需相对口径的马克苏托夫-卡塞格林系统,也可直接将弯月镜中央部分镀铝构成马克苏托夫-卡塞格林系统.马克苏托夫望远镜的主要优点:系统中的所有表面都是球面的,容易制造;在同样的口径和焦距的情况下,镜筒的长度比施密特望远镜的短.缺点是:和相同的施密特望远镜比较,视场稍小;弯月形透镜的厚度较大,一般约为口径的1/10,对使用的光学玻璃有较高的要求,因此,限制了口径的增大.
目前,最大的马克苏托夫望远镜在苏联阿巴斯图马尼天文台,弯月透镜口径为70厘米,球面镜直径为98厘米,焦距为210厘米
哈勃空间望远镜的历史可以追溯至1946年天文学家莱曼以降低成本和更有效与紧密的配置望远镜的硬件。马歇尔太空飞行中心委托珀金埃尔默设计和制造太空望远