植物的光合作用竞赛级别的,看书实在看不明白了.
来源:学生作业帮助网 编辑:六六作业网 时间:2024/11/17 08:22:03
植物的光合作用竞赛级别的,看书实在看不明白了.
植物的光合作用
竞赛级别的,看书实在看不明白了.
植物的光合作用竞赛级别的,看书实在看不明白了.
我给你传过去
光合作用的过程
1.光反应和暗反应
根据需光与否,可笼统的将光合作用分为两个反应――光反应和暗反应。光反应发生水的光解、O2的释放和ATP及NADPH(还原辅酶II)的生成。反应场所是叶绿体的类囊体膜中,需要光。暗反应利用光反应形成的ATP和NADPH,将CO2还原为糖。反应场所是叶绿体基质中,不需光。从能量转变角度来看,光合作用可分为下列3大步骤:光能的吸收、传递和转换过...
全部展开
光合作用的过程
1.光反应和暗反应
根据需光与否,可笼统的将光合作用分为两个反应――光反应和暗反应。光反应发生水的光解、O2的释放和ATP及NADPH(还原辅酶II)的生成。反应场所是叶绿体的类囊体膜中,需要光。暗反应利用光反应形成的ATP和NADPH,将CO2还原为糖。反应场所是叶绿体基质中,不需光。从能量转变角度来看,光合作用可分为下列3大步骤:光能的吸收、传递和转换过程(通过原初反应完成);电能转化为活跃的化学能过程(通过电子传递和光合磷酸化完成);活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。前两个步骤属于光反应,第三个步骤属于暗反应。
(1)光能的吸收、传递和转换
①原初反应:为光合作用最初的反应,它包括光合色素对光能的吸收、传递以及将光能转换为电能的具体过程(图5-1)。
②参加原初反应的色素
光合色素按功能可分为两类:一类具有吸收和传递光能的作用,包括绝大多数的叶绿素a,以及全部的叶绿素b、胡萝卜素和叶黄素;另一类是少数处于特殊状态的叶绿素a,这种叶绿素a能够捕获光能,并将受光能激发的电子传送给相邻的电子受体。在类囊体膜中,上述色素并非散乱地分布着,而是与各种蛋白质结合成复合物,共同形成称做光系统的大型复合物(图5-2)。
光系统:由光合色素组成的特殊功能单位。每一系统包含250-400个叶绿素和其他色素分子。分光系统I和光系统II,2个光系统之间有电子传递链相连接。
光系统I(PSI):作用中心色素为P700,P700被激发后,把电子供给Fd。
光系统II(PSII):作用中心色素为P680,P680被激发后,电子供给pheo(去镁叶绿素),并与水裂解放氧相连。
③原初反应的基本过程:D•P•A →D•P*•A →D•P+•A- →D+•P•A-
D•P•A 为光系统或反应中心
Donor(原初电子供体)
Pigment (作用中心色素)
Acceptor (原初电子受体)
(2)电能转化为活跃的化学能
①水的光H2O是光合作用中O2来源,也是光合电子的最终供体。
水光解的反应:2H2O→O2+4H++4e-
②光合电子传递链(光合链)
概念:光合链是指定位在光合膜上的、一系列互相衔接的电子传递体组成的电子传递的总轨道。
由于各电子传递体具不同的氧化还原电位,负值越大代表还原势越强,正值越大代表氧化势越强,据此排列呈“Z”形,又称为“Z方案”(图5-3)。
③光合电子传递的类型:非环式电子传递;环式电子传递;假环式电子传递。
④光合磷酸化
光合磷酸化的概念:叶绿体在光下把无机磷酸和ADP转化为ATP,形成高能磷酸键的过程。光合磷酸化与光合电子传递相偶联,同样分为三种类型:即非环式光合磷酸化;环式光合磷酸化;假环式光合磷酸化。
光合磷酸化的机理:化学渗透学说,即在光合电子传递体中,PQ经穿梭在传递电子的同时,把膜外基质中的H+转运至类囊体膜内;PSⅡ光解水时在膜内释放H+;PSⅠ引起NADP+的还原时,进一步引起膜外H+浓度降低。这样膜内外存在H+浓度差(ΔpH),同时膜内外电荷呈现“内正外负”,引起电位差(Δ)。ΔpH和Δ合称质子动力势。H+顺着浓度梯度返回膜外时释放能量,在ATP酶催化下,偶联ATP合成。
(3)活跃的化学能转变为稳定的化学能
①碳同化:植物利用光反应中形成的NADPH和ATP将CO2转化成稳定的碳水化合物的过程,称为CO2同化或碳同化。
②碳同化的途径:
A)卡尔文循环(又叫C3途径):CO2的受体是一种戊糖(核酮糖二磷酸,RuBP),故又称为还原戊糖磷酸途径(RPPP)。二氧化碳被固定形成的最初产物是一种三碳化合物(3-磷酸甘油酸),故称为C3途径。是卡尔文等在50年代提出的,故称为卡尔文循环(The Calvin cycle)。
卡尔文循环具有合成淀粉等有机物的能力,是所有植物光合碳同化的基本途径,大致可分为三个阶段,即羧化阶段、还原阶段和再生阶段。
C3途径的总反应式:
3CO2+5H2O+3RuBP+9ATP+6NADPH→PGAld+6NADP++9ADP+9Pi
可见,要产生1molPGAld(磷酸丙糖分子)需要消耗3mol CO2,9mol ATP和6mol NADPH。
B)C4途径(又叫Hatch-Slack途径):有些起源于热带的植物,如甘蔗、玉米等,除了和其它植物一样具有卡尔文循环以外,还存在一条固定CO2的途径。按C4途径固定CO2的植物称为C4植物。现已知被子植物中有20多个科近2000种植物中存在C4途径。
C3和C4叶的结构的不同:绿色植物的叶片中有由导管和筛管等构成的维管束,围绕着维管束的一圈薄壁细胞叫做维管束鞘细胞,C3植物叶片中的维管束鞘细胞不含叶绿体,维管束鞘以外的叶肉细胞排列疏松,但都含有叶绿体(图5-4)。
C4植物的叶片中,围绕着维管束的是呈“花环型”的两圈细胞:里面的一圈是维管束鞘细胞,外面的一圈是一部分叶肉细胞。C4植物中构成维管束鞘的细胞比较大,里面含有没有基粒的叶绿体,这种叶绿体不仅数量比较多,而且个体比较大,叶肉细胞则含有正常的叶绿体。(图5-5)
固定CO2的最初产物是四碳二羧酸(草酰乙酸),故称为C4-二羧酸途径(C4-dicarboxylic acid pathway),简称C4途径。也叫Hatch-Slack途径。
C4循环和C3循环的关系见图5-6。
图5-6 C4循环和C3循环的关系
C4途径中的反应基本上可分为:
①羧化反应 在叶肉细胞中磷酸烯醇式丙酮酸(PEP)与HCO3~在磷酸烯醇式丙酮酸羧化酶(PEPC)催化下形成草酰乙酸(OAA);
②还原或转氨作用 OAA被还原为苹果酸(Mal),或经转氨作用形成天冬氨酸(Asp);
③脱羧反应 C4酸通过胞间连丝移动到BSC,在BSC中释放CO2,CO2由C3 途径同化;
④底物再生 脱羧形成的C3酸从BSC运回叶肉细胞并再生出CO2受体PEP。
C4植物具较高光合速率的因素有:
①C4植物的叶肉细胞中的PEPC对底物HCO3~的亲和力极高,细胞中的HCO3~浓度一般不成为PEPC固定CO2的限制因素;
②C4植物由于有“CO2泵”浓缩CO2的机制,使得BSC中有高浓度的CO2,从而促进Rubisco的羧化反应,降低了光呼吸,且光呼吸释放的CO2又易被再固定;
③高光强又可推动电子传递与光合磷酸化,产生更多的同化力,以满足C4植物PCA循环对ATP的额外需求;
④鞘细胞中的光合产物可就近运入维管束,从而避免了光合产物累积对光合作用可能产生的抑制作用。
但是C4植物同化CO2消耗的能量比C3植物多,也可以说这个“CO2泵”是要由ATP来开动的,故在光强及温度较低的情况下,其光合效率还低于C3植物。可见C4途径是植物光合碳同化对热带环境的一种适应方式。
C)景天科酸代谢途径(CAM):干旱地区的景天科、仙人掌科、菠萝等植物有一个特殊的CO2同化方式。晚上气孔开放,吸进CO2,再PEP羧化酶作用下,与PEP结合,形成OAA,进一步还原为苹果酸,积累于液泡中。白天气孔关闭,液泡中的苹果酸便运到胞质溶胶,在依赖NADP苹果酸酶作用下,氧化脱羧,放出CO2,参与卡尔文循环,形成淀粉等。这类植物体内白天糖分含量高,而夜间有机酸含量高。具有这种有机酸合成日变化类型的光合碳代谢称为景天科酸代谢。
植物的光和碳同化途径具有多样性,这也反映了植物对生态环境多样性的适应。但是C3途径是最基本、最普遍的途径,也只有该途径才可以生成碳水化合物,C4和CAM途径都是C3途径的辅助形式,只能起固定、运转、浓缩CO2的作用,单独不能形成淀粉等碳水化合物。
(4)光呼吸
光呼吸:植物绿色细胞在光下吸收O2、释放CO2的过程称为光呼吸。一般生活细胞的呼吸在光暗条件下都可以进行,对光照没有特殊要求,可称为暗呼吸。光呼吸与暗呼吸在呼吸底物、代谢途径以及光呼吸速率等方面均不相同。
光呼吸的全过程需要由叶绿体、过氧化物酶体和线粒体三种细胞器协同完成。光呼吸的底物是乙醇酸,O2的吸收发生在叶绿体和过氧化物酶体,CO2的释放发生在线粒体。光呼吸时,每氧化2分子乙醇酸放出1分子CO2,碳素损失>25%。
光呼吸的意义:①消除乙醇酸的毒害:乙醇酸的产生在代谢中是不可避免的。光呼吸可消除乙醇酸的毒害作用。②维持C3途径的运转:在叶片气孔关闭或外界CO2浓度降低时,光呼吸释放的CO2能被C3途径再利用,以维持C3途径的运转。③防止强光对光合机构的破坏:在强光下,光反应中形成的同化力会超过暗反应的需要,叶绿体中NADPH/NADP+的比值增高,最终电子受体NADP+不足,由光激发的高能电子会传递给O2,形成超氧阴离子自由基O2~,O2~对光合机构具有伤害作用,而光呼吸可消耗过剩的同化力,减少O2~的形成,从而保护光合机构。④氮代谢的补充:光呼吸代谢中涉及多种氨基酸(甘氨酸、丝氨酸等)的形成和转化过程,对绿色细胞的氮代谢是一个补充。
光合作用主要反应概要
反 应 主要事件 需要的物质 最终产物
1、光反应
(类囊体膜)
光化学反应
电子传递
化学渗透 利用光能使水光解,合成ATP和还原NADP+(即NADPH)
叶绿素激发;反应中心将高能电子传递给电子受体
电子沿着类囊体膜上的电子传递链传递,并最终还原NADP +;水的光解提供的H+积累于类囊体内
质子穿越类囊体膜进入类囊体;在类囊体和基质间形成质子梯度;质子通过由ATP合成酶复合物构成的特殊通道回到基质中;ATP生成
光能;光合色素
电子;NADP+;H2O
质子梯度
ADP+Pi
电子
NADPH+H +; O2;H +
ATP
2、暗反应
(基质)
CO2固定,即CO2与一有机化合物结合 二磷酸核酮糖;CO2;ATP;NADPH+H +
糖;ADP+Pi,NADP +
2.影响光合作用的因素
(1)外部因素:
①
A)光强
光补偿点:当叶片的光合速率与呼吸速率相等(净光合速率为零)时的光照强度,称为光补偿点。
光饱和点:在一定条件下,使光合速率达到最大时的光照强度,称为光饱和点。
出现光饱和点的原因:强光下暗反应跟不上光反应从而限制了光合速率。
一般来说,光补偿点高的植物其光饱和点也高。如,草本植物的光补偿点与光饱和点>木本植物;阳生植物的>阴生植物;C4植物的>C3植物。光补偿点低的植物较耐荫,适于和光补偿点高的植物间作。如豆类与玉米间作。
光抑制:光能过剩导致光合效率降低的现象称为光合作用的光抑制。
光抑制现象在自然条件下是经常发生的,因为晴天中午的光强往往超过植物的光饱和点,如果强光与其它不良环境(如高温、低温、干旱等)同时存在,光抑制现象更为严重。
B)光质
对光合作用有效的是可见光。红光下,光合效率高;蓝紫光次之;绿光的效果最差。红光有利于碳水化合物的形成,蓝紫光有利于蛋白的形成。
②
CO2补偿点:当光合速率与呼吸速率相等时,外界环境中的CO2浓度即为补偿点。凡是能提高CO2浓度差和减少阻力的因素都可促进CO2流通从而提高光合速率。如改善作物群体结构,加强通风,增施CO2肥料等。
CO2饱和点:
当光合速率开始达到最大值(Pm)时的CO2浓度被称为CO2饱和点。
凡是能提高CO2浓度差和减少阻力的因素都可促进CO2流通从而提高光合速率。如改善作物群体结构,加强通风,增施CO2肥料等。
③光合作用有温度三基点,即光合作用的最低、最适和最高温度。低温抑制光合的原因主要是,低温导致膜脂相变,叶绿体超微结构破坏以及酶的钝化。高温会引起膜脂和酶蛋白的热变性,加强光呼吸和暗呼吸。在一定温度范围内,昼夜温差大,有利于光合产物积累。
④用于光合作用的水只占植物吸收水分的1%,因此,水分缺乏主要是间接的影响光合作用,具体地说,缺水使气孔关闭,影响二氧化碳进入叶内;使光合产物输出减慢;使光合机构受损;光合面积减少。水分过多也会影响光合作用。土壤水分过多时,通气状况不良,根系活力下降,间接影响光合作用。
⑤直接或间接影响光合作用。N、P、S、Mg是叶绿体结构中组成叶绿素、蛋白质和片层膜的成分;Cu、Fe是电子传递体的重要成分;Pi是ATP、NADPH以及光合碳还原循环中许多中间产物的成分;Mn、Cl是光合放氧的必需因子;K、Ca对气孔开闭和同化物运输具有调节作用。因此,农业生产中合理施肥的增产作用,是靠调节植物的光合作用而间接实现的。
⑥引起光合“午睡”的原因:大气干旱和土壤干旱(引起气孔导度下降);CO2浓度降低,光合产物淀粉等来不及运走,反馈抑制光合作用。光呼吸增强。光合“午休”造成的损失可达光合生产的30%以上。
(2)内部因素:
①不同部位
以叶龄为例:幼叶净光合速率低,需要功能叶片输入同化物;叶片全展后,光合速率达最大值(叶片光合速率维持较高水平的时期,称为功能期);叶片衰老后,光合速率下降。
②不同生育期
一般都以营养生长期为最强,到生长末期就下降。
3.提高光能利用率的途径
光能利用率:单位土地面积上植物光合作用积累的有机物所含的化学能,占同一期间入射光能量的百分率称为光能利用率。作物光能利用率很低,即便高产田也只有1%~2%。
(1)延长光合时间:措施有提高复种指数、延长生育期(如防止功能叶的早衰)、补充人工光照等。
(2)增加光合面积:措施有合理密植、改变株型等。
(3)增强光合作用效率:措施主要有增加二氧化碳浓度、降低光呼吸等。
收起