什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊 怎么理解啊`

来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/26 13:30:20
什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊怎么理解啊`什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊怎么理解啊`什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊怎么理解啊`核

什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊 怎么理解啊`
什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊 怎么理解啊`

什么叫核裂变和核聚变呢````为什么太阳辐射是核聚变啊 怎么理解啊`
核裂变(Nuclear fission)又称核分裂,是一个原子核分裂成几个原子核的变化.是指由重的原子,主要是指铀或钚,分裂成较轻的原子的一种核反应形式.
  只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变.这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变……,使过程持续进行下去,这种过程称作链式反应.原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能.1千克铀-235的全部核的裂变将产生20,000兆瓦小时的能量(足以让20兆瓦的发电站运转1,000小时),与燃烧300万吨煤释放的能量一样多.另见裂变和聚变.
  核裂变是在1938年发现的,由于当时第二次世界大战的需要,核裂变被首先用于制造威力巨大的原子武器——原子弹.原子弹的巨大威力就是来自核裂变产生的巨大能量.目前,人们除了将核裂变用于制造原子弹外,更努力研究利用核裂变产生的巨大能量为人类造福,让核裂变始终在人们的控制下进行,核电站就是这样的装置.
  裂变释放能量是因为原子核中质量-能量的储存方式以铁及相关元素(见核合成)的核的形态最为有效.从最重的元素一直到铁,能量储存效率基本上是连续变化的,所以,重核能够分裂为较轻核(到铁为止)的任何过程在能量关系上都是有利的.如果较重元素的核能够分裂并形成较轻的核,就会有能量释放出来.然而,很多这类重元素的核一旦在恒星内部形成,即使在形成时要求输入能量(取自超新星爆发),它们却是很稳定的.不稳定的重核,比如铀-235的核,可以自发裂变.快速运动的中子撞击不稳定核时,也能触发裂变.由于裂变本身释放分裂的核内中子,所以如果将足够数量的放射性物质(如铀-235)堆在一起,那么一个核的自发裂变将触发近旁两个或更多核的裂变,其中每一个至少又触发另外两个核的裂变,依此类推而发生所谓的链式反应.这就是称之为原子弹(实际上是核弹)和用于发电的核反应堆(通过受控的缓慢方式)的能量释放过程.对于核弹,链式反应是失控的爆炸,因为每个核的裂变引起另外好几个核的裂变.对于核反应堆,反应进行的速率用插入铀(或其他放射性物质)堆的可吸收部分中子的物质来控制,使得平均起来每个核的裂变正好引发另外一个核的裂变.
  核裂变所释放的高能量中子移动速度极高(快中子),因此必须透过减速,以增加其撞击原子的机会,同时引发更多核裂变.一般商用核反应堆多使用慢化剂将高能量中子速度减慢,变成低能量的中子(热中子) .商营核反应堆普遍采用普通水、石墨和较昂贵的重水作为慢化剂.
  核裂变是一个原子核分裂成几个原子核的变化.只有一些质量非常大的原子核像铀、钍等才能发生核裂变.这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变……,使过程持续进行下去,这种过程称作链式反应.原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能.1克铀235完全发生核裂变后放出的能量相当于燃烧2.5吨煤所产生的能量.比原子弹威力更大的核武器是氢弹,就是利用核聚变来发挥作用的.核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程.只有较轻的原子核才能发生核聚变,比如氢的同位素氘、氚等.核聚变也会放出巨大的能量,而且比核裂变放出的能量更大.太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的.
  核聚变的定义:
  核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式.原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放.如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源.
  相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式.
  目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸.但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出.科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走.
  目前主要的几种可控核聚变方式:
  超声波核聚变
  激光约束(惯性约束)核聚变
  磁约束核聚变(托卡马克)
  核聚变的另一定义
  比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的.核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程.只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等.核聚变也会放出巨大的能量,而且比核裂变放出的能量更大.太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的.
  核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变.而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变.
  实现受控核聚变具有极其诱人的前景.不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取.经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量.全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰.
  但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻.发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应.可以想象,没有什么材料能经受得起1亿度的高温.此外还有许多难以想象的困难需要去克服.尽管存在着许多困难,人们经过不断研究已取得了可喜的进展.科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等.可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务.
  利用核能的最终目标是要实现受控核聚变.裂变时靠原子核分裂而释出能量.聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量.最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量.核聚变较之核裂变有两个重大优点.一是地球上蕴藏的核聚变能远比核裂变能丰富得多.据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘.1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量.地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源.至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂.
  第二个优点是既干净又安全.因为它不会产生污染环境的放射性物质,所以是干净的.同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的.
  目前实现核聚变已有不少方法.最早的著名方法是"托卡马克"型磁场约束法.它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件.虽然在实验室条件下已接近于成功,但要达到工业应用还差得远.按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元.
  另一种实现核聚变的方法是惯性约束法.惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内.从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高.当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能.这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一).如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站.
  原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的.
  尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登.