pa66是什么材料

来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/23 23:11:45
pa66是什么材料pa66是什么材料pa66是什么材料尼龙66为聚己二酰己二胺,工业简称PA66.常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万.各种聚酰胺的共同特点是耐燃,抗张强度高(

pa66是什么材料
pa66是什么材料

pa66是什么材料
尼龙66为聚己二酰己二胺,工业简称PA66.常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万.各种聚酰胺的共同特点是耐燃,抗张强度高(达104千帕),耐磨,电绝缘性好
尼龙66简介
热性质(1) 熔点(Tm)
(2) 玻璃化温度(Tg)
结晶和结晶度(1) 结晶构造
(2) 球晶
(3) 结晶度
分子量和分子量分布
尼龙66针式滤膜尼龙66简介
热性质 (1) 熔点(Tm)
(2) 玻璃化温度(Tg)
结晶和结晶度 (1) 结晶构造
(2) 球晶
(3) 结晶度
分子量和分子量分布
尼龙66针式滤膜
展开 编辑本段尼龙66简介
中文别名:锦纶66短纤维;聚己二酰己二胺;尼龙-66;尼龙66;尼龙66树脂;聚酰胺-66;聚已二酰己二胺;锦纶-66
(1) 熔点(Tm)
熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动.通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃.实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]. 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃.接近理论熔解温度259℃.
(2) 玻璃化温度(Tg)
高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度.在这一温度附近,模量、振动频率、介电常数等也开始发生变化. 尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关.Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ].
(1) 结晶构造
Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]. Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73.从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长.相邻的分子以氢键连成平面的片状,其模型如图01-68所示. 表01-68 尼龙-66 稳定晶形的晶格常数 晶体 a b c(纤维轴) α β γ α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm 48½° 77° 63½° 计算密度=1.24g/cm3 图01-44 尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ] 线条:链状分子;○:氧原子 从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积.对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合.
(2) 球晶
熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶.球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%. 球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ].尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ].球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响.
(3) 结晶度
一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度.在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质.结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便.
编辑本段分子量和分子量分布
综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差.已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行. 热分解和水解反应 与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化.当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物.其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关. 在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等.在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2). 在有氧和水等存在时,尼龙-66在200℃就显示出明显的分解倾向.在有氧存在时,加热还会引起分子链之间的交联. 尼龙-66对室温水和沸水是稳定的,但在高温尤其是在熔融状态下则会发生水解.另外,尼龙-66在碱性水溶液中也很稳定,即使在10%的NaOH溶液中于85℃处理16小时也观察不到明显的变化.但在酸性水溶液中容易发生水解.
编辑本段尼龙66针式滤膜
尼龙66针式滤膜是有机系滤膜,适用于绝大多数有机溶剂和水溶液,可用于强酸,70%乙醇,二氯甲烷等有机溶剂,耐高温,强度好,化学性能稳定.