怎样用PSO算法求解一个简单的函数

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/11 10:42:39
怎样用PSO算法求解一个简单的函数怎样用PSO算法求解一个简单的函数怎样用PSO算法求解一个简单的函数约束优化  约束优化问题的目标是在满足一组线性或非线性约束的条件下,找到使得适应值函数最优的解.对

怎样用PSO算法求解一个简单的函数
怎样用PSO算法求解一个简单的函数

怎样用PSO算法求解一个简单的函数
约束优化
  约束优化问题的目标是在满足一组线性或非线性约束的条件下,找到使得适应值函数最优的解.对于约束优化问题,需要对原始PSO算法进行改进来处理约束.  一种简单的方法是,所有的微粒初始化时都从可行解开始,在更新过程中,仅需记住在可行空间中的位置,抛弃那些不可行解即可.该方法的缺点是对于某些问题,初始的可行解集很难找到.或者,当微粒位置超出可行范围时,可将微粒位置重置为之前找到的最好位置,这种简单的修正就能成功找到一系列Benchmark问题的最优解.Paquet让微粒在运动过程中保持线性约束,从而得到一种可以解决线性约束优化问题的PSO算法.Pulido引入扰动算子和约束处理机制来处理约束优化问题.Park提出一种改进的PSO算法来处理等式约束和不等式约束.  另一种简单的方法是使用惩罚函数将约束优化问题转变为无约束优化问题,之后再使用PSO算法来进行求解.Shi将约束优化问题转化为最小—最大问题,并使用两个共同进化的微粒群来对其求解.谭瑛提出一种双微粒群的PSO算法,通过在微粒群间引入目标信息与约束信息项来解决在满足约束条件下求解目标函数的最优化问题.Zavala在PSO算法中引入两个扰动算子,用来解决单目标约束优化问题.  第三种方法是采用修复策略,将微粒发现的违反约束的解修复为满足约束的解.
约束满足问题
  PSO算法设计的初衷是用来求解连续问题,但近年来对于可满足性问题PSO算法的研究也不断得到人们的重视.Schoofs提出用PSO算法求解二元约束满足问题,对微粒的位置和速度计算公式进行了重新定义,使用变量和它的关联变量存在的冲突数作为微粒的适应度函数,并指出该算法在求解约束满足问题上具有一定优势.Lin在Schoofs工作的基础上研究了使用PSO算法来求解通用的n元约束满足问题.杨轻云在Schoofs工作的基础上对适应度函数进行了改进,把最大度静态变量序列引入到适应度函数的计算中.