狭义相对论及时空扭曲顺便问下黑洞及虫洞

来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/27 01:31:18
狭义相对论及时空扭曲顺便问下黑洞及虫洞狭义相对论及时空扭曲顺便问下黑洞及虫洞狭义相对论及时空扭曲顺便问下黑洞及虫洞狭义相对论的两条原理1905年,爱因斯坦发表了狭义相对论的奠基性论文《论运动物体的电动

狭义相对论及时空扭曲顺便问下黑洞及虫洞
狭义相对论及时空扭曲
顺便问下黑洞及虫洞

狭义相对论及时空扭曲顺便问下黑洞及虫洞
狭义相对论的两条原理
1905年,爱因斯坦发表了狭义相对论的奠基性论文《论运动物体的电动力学》.关于狭义相对论的基本原理,他写道: “下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们规定如下:
1.物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是用两个在互相匀速移动着的坐标系中的哪一个并无关系.
2.任何光线在“静止的”坐标系中都是以确定的速度c运动着,不管这道光线是由静止的还是运动的物体发射出来的.”
其中第一条就是相对性原理,第二条是光速不变性(人为假定的).整个狭义相对论就建筑在这两条基本原理上.
爱因斯坦的哲学观念是,自然界应当是和谐而简单的.的确,他的理论常有一种引人注目的特色:出于简单而归于深奥.狭义相对论就是具有这种特色的一个体系.狭义相对论的两条基本原理似乎是并不难接受的“简单事实”,然而它们的推论却根本地改变了牛顿以来物理学的根基.
后面我们将开始这种推论.
爱因斯坦狭义相对论
相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论变革了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观.广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论.在相对论的建立过程中,爱因斯坦起了主要的作用.
爱因斯坦是美籍德国物理学家.1914年任德国威廉皇帝物理研究所所长和普鲁士科学院院士,1933年因遭纳粹政权迫害迁往美国,任普林斯顿高等研究院主任.1905睥,在他26岁时,法文科学杂志《物理年鉴》刊登了他的一篇论文《论运动物体的电动力学》,这篇论文是关于相对论的第一篇论文,它相当全面地论述了狭义相对论,解决了从19世纪中期开始,许多物理学家都未能解决的有关电动力学以及力学和电动力学结合的问题.
提起狭义相对论,很多人马上就想到钟表慢走和尺子缩短现象.许多科学幻想作品用它作题材,描写一个人坐火箭遨游太空回来以后,发现自己还很年轻,而孙子已经变成了老头.其实,钟表慢走和尺子缩短只是狭义相对论的几个结论之一,它是指物体高速运动的时候,运动物体上的时钟变慢了,尺子变短了.钟表慢走和尺子缩短现象就是时间和空间随物质运动而变化的结果.狭义相对论还有一个质量随运动速度而增加的结论.实验中发现,高速运动的电子的质量比静止的电子的质量大.
狭义相对论最重要的结论是使质量守恒失去了独立性.它和能量守恒原理融合在一起,质量和能量可以互相转化.如果物质质量是M,光速是C,它所含有的能量是E,那么E=MC^2.这个公式只说明质量是M的物体所蕴藏的全部能量,并不等于都可以释放出来,在核反应中消失的质量就按这个公式转化成能量释放出来.按这个公式,1克质量相当于9*10 3焦耳的能量.这个质能转化和守恒原理就是利用原子能的理论基础.
在狭义相对论中,虽然出现了用牛顿力学观点完全不能理解的结论:空间和时间随物质运动而变化,质量随运动而变化,质量和能量的相互转化,但是狭义相对论并不是完全和牛顿力学割裂的,当运动速度远低于光速的时候,狭义相对论的结论和牛顿力学就不会有什么区别.
几十年来的历史发展证明,狭义相对论大大推动了科学进程,成为现代物理学的基本理论之一.
爱因斯坦于1922年12月有4日,在日本京都大学作的题为《我是怎样创立相对论的?》的演讲中,说明了他关于相对论想法的产生和发展过程.他说:“关于我是怎样建立相对论概念这个问题,不太好讲.我的思想曾受到那么多神秘而复杂的事物的启发,每种思想的影响,在生活幸福论概念的发展过程中的不同阶段都不一样……我第一次产生发展相对论的念头是在17年前,我说不准这个想法来自何处,但是我肯定,它包含在运动物体光学性质问题中,光通过以大海洋传播,地球在以太中运动,换句话说,即以太阳对地球运动.我试图在物理文献中寻找以太流动的明显的实验证据,蓝天是没有成功.随后,我想亲自证明以太相对地球的运动,或者说证明地球的运动.当我首次想到这个问题的时候,我不怀疑以太的存在或者地球通过以太的运动.”于是,他设想了一个使用两个热电偶进行的实验:设置一些反光镜,以使从单个光源发出的光在两个不同的方向被反射,一束光平行于地球的运动方向且同向,另一束光逆向而行.如果想象在两个反射光束间的能量差的话,就能用两个热电偶测出产生的热量差.虽然这个实验的想法与迈克尔逊实验非常相似,但是他没有得出结果.
爱因斯坦说:他最初考虑这个问题时,正是学生时代,当时他已经知道了迈克尔逊实验的奇妙结果,他很快就得出结论:如果相信迈克尔逊的零结果,那么关于地球相对以太运动的想法就是错误的.他说道:“这是引导我走向狭义相对论的第一条途径.自那以后,我开始相信,虽然地球围绕太阳转动,但是,地球运动不可能通过任何光学实验探测太阳转动,但是,地球的运动不可能通过任何光学实验探测出来.”
爱因斯坦有机会读了洛伦兹在1895年发表的论文,他讨论并完满解决了u/c的高次项(u为运动物体的速度,c为光速).然后爱因斯坦试图假定洛伦兹电子方程在真空参照系中有效,也应该在运动物体的参照系中有效,去讲座菲索实验.在那时,爱因斯坦坚信,麦克斯韦-洛伦兹的电动力学方程是正确的.进而这些议程在运动物体参照系中有效的假设导致了光速不变的概念.然而这与经典力学中速度相加原理相违背.
为什么这两个概念互相矛盾.爱因斯坦为了解释它,花了差不多一年的时间试图去修改洛伦兹理论.一个偶然的机会.他在一个朋友的帮助下解决了这一问题.爱因斯坦去问他并交谈讨论了这个困难问题的各个方面,突然爱因斯坦找到了解决所有的困难的办法.他说:“我在五周时间里完成了狭义相对论原理.”
爱因斯坦的理论否定了以太概念,肯定了电磁场是一种独立的、物质存在的特殊形式,并对空间、时间的概念进行了深刻的分析,从而建立了新的时空关系.他1905年的论文被世界公认为第一篇关于相对论的论文,他则是第一位真正的相对论物理学家.
狭义相对论效应
根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间.在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性.
相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应.可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了.
尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差.由于"同时"的相对性,不同惯性系中测量的长度也不同.相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点.
由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性.也就是说,时间进度与参考系有关.这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量.比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的".这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时.也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟.
时钟佯谬或双生子佯谬
相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬.一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球.爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻.许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论.如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式.在此只是用语言来描述一种最简单的情形.不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍.我们的结论是,无论在那个参考系中,B都比A年轻.
为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇.这样处理的目的是略去加速和减速造成的影响.在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻.在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程.在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方.这是一个"超光速"过程.只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速.如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较.火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间.B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了.在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了.重逢时,自己仍比A年轻.也就是说,相对论不存在逻辑上的矛盾.
相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变.经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂.因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学.
狭义相对论建立以后,对物理学起到了巨大的推动作用.并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果.然而在成功的背后,却有两个遗留下的原则性问题没有解决.第一个是惯性系所引起的困难.抛弃了绝对时空后,惯性系成了无法定义的概念.我们可以说惯性系是惯性定律在其中成立的参考系.惯性定律的实质是一个不受外力的物体保持静止或匀速直线运动的状态.然而"不受外力"是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动.这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的.我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般.第二个是万有引力引起的困难.万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架.当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意.
爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间.为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系.因此第一个问题转化为非惯性系的时空结构问题.在非惯性系中遇到的第一只拦路虎就是惯性力.在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决.几经曲折,爱因斯坦终于建立了完整的广义相对论.广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多.至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解.它那优美的数学形式至今令物理学家们叹为观止.就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破.然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改.于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派.直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论.爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获.不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论.目前学术界公认的最有希望的候选者是超弦理论与超膜理论.
黑洞
[拼音] [hei dong]
[ Astronomy ] the black hole
■【黑洞简介】
广义相对论预言的一种特别致密的暗天体.大质量恒星在其演化末期发生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子在内的任何物质只能进去而无法逃脱.形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量.除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可能存在于星系中央.(参考:《宇宙新视野》)
黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故.我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞.虽然这么说,但黑洞还是有它的边界,即”事件视界(视界)”.据猜测,黑洞是死亡恒星的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的.另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的.(有关参考:《时间简史》——霍金 著)
■物理学观点的解释
黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离.对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第二宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片.
1、一些科学家认为,以为光的速度比黑洞慢,所以被吸进去,当速度比黑洞快时就可以穿过黑洞边缘.
2、还有一些科学家认为只要一个物体(<黑洞原子<普通原子)才能进入黑洞而不被撕碎,又平安无损.

狭义相对论有两个原理 一个是光速不变原理 一个是说在任何惯性系物理规律都一样
时空扭曲是通过对光通过星球发生弯曲推测出空间发生弯曲 由于空间弯曲伴随着时间的变化 所以说时空扭曲
黑洞是这样一种星体 其密度非常大 半径非常小 其表面的逃逸速度非常大以致连光都无法逃离 看上去就想一个黑乎乎的洞 就叫它黑洞
虫洞是科学家假想 他是黑洞与白洞之间联系的纽带 黑洞吞物质 通过虫...

全部展开

狭义相对论有两个原理 一个是光速不变原理 一个是说在任何惯性系物理规律都一样
时空扭曲是通过对光通过星球发生弯曲推测出空间发生弯曲 由于空间弯曲伴随着时间的变化 所以说时空扭曲
黑洞是这样一种星体 其密度非常大 半径非常小 其表面的逃逸速度非常大以致连光都无法逃离 看上去就想一个黑乎乎的洞 就叫它黑洞
虫洞是科学家假想 他是黑洞与白洞之间联系的纽带 黑洞吞物质 通过虫洞 到达白洞 白洞吐物质 穿越黑洞通过虫洞到达白洞 就可以穿越时空 回到任何时候

收起

相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论变革了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。
爱因斯坦是美籍德国物理学家。1914年任德国威廉皇帝物理研究所所长和普鲁士科学院院士,1933...

全部展开

相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论变革了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。
爱因斯坦是美籍德国物理学家。1914年任德国威廉皇帝物理研究所所长和普鲁士科学院院士,1933年因遭纳粹政权迫害迁往美国,任普林斯顿高等研究院主任。1905睥,在他26岁时,法文科学杂志《物理年鉴》刊登了他的一篇论文《论运动物体的电动力学》,这篇论文是关于相对论的第一篇论文,它相当全面地论述了狭义相对论,解决了从19世纪中期开始,许多物理学家都未能解决的有关电动力学以及力学和电动力学结合的问题。
提起狭义相对论,很多人马上就想到钟表慢走和尺子缩短现象。许多科学幻想作品用它作题材,描写一个人坐火箭遨游太空回来以后,发现自己还很年轻,而孙子已经变成了老头。其实,钟表慢走和尺子缩短只是狭义相对论的几个结论之一,它是指物体高速运动的时候,运动物体上的时钟变慢了,尺子变短了。钟表慢走和尺子缩短现象就是时间和空间随物质运动而变化的结果。狭义相对论还有一个质量随运动速度而增加的结论。实验中发现,高速运动的电子的质量比静止的电子的质量大。
狭义相对论最重要的结论是使质量守恒失去了独立性。它和能量守恒原理融合在一起,质量和能量可以互相转化。如果物质质量是M,光速是C,它所含有的能量是 E,那么E=MC^2。这个公式只说明质量是M的物体所蕴藏的全部能量,并不等于都可以释放出来,在核反应中消失的质量就按这个公式转化成能量释放出来。按这个公式,1克质量相当于9*10 3焦耳的能量。这个质能转化和守恒原理就是利用原子能的理论基础。
在狭义相对论中,虽然出现了用牛顿力学观点完全不能理解的结论:空间和时间随物质运动而变化,质量随运动而变化,质量和能量的相互转化,但是狭义相对论并不是完全和牛顿力学割裂的,当运动速度远低于光速的时候,狭义相对论的结论和牛顿力学就不会有什么区别。
几十年来的历史发展证明,狭义相对论大大推动了科学进程,成为现代物理学的基本理论之一。
爱因斯坦于1922年12月有4日,在日本京都大学作的题为《我是怎样创立相对论的?》的演讲中,说明了他关于相对论想法的产生和发展过程。他说:“关于我是怎样建立相对论概念这个问题,不太好讲。我的思想曾受到那么多神秘而复杂的事物的启发,每种思想的影响,在生活幸福论概念的发展过程中的不同阶段都不一样……我第一次产生发展相对论的念头是在17年前,我说不准这个想法来自何处,但是我肯定,它包含在运动物体光学性质问题中,光通过以大海洋传播,地球在以太中运动,换句话说,即以太阳对地球运动。我试图在物理文献中寻找以太流动的明显的实验证据,蓝天是没有成功。随后,我想亲自证明以太相对地球的运动,或者说证明地球的运动。当我首次想到这个问题的时候,我不怀疑以太的存在或者地球通过以太的运动。”于是,他设想了一个使用两个热电偶进行的实验:设置一些反光镜,以使从单个光源发出的光在两个不同的方向被反射,一束光平行于地球的运动方向且同向,另一束光逆向而行。如果想象在两个反射光束间的能量差的话,就能用两个热电偶测出产生的热量差。虽然这个实验的想法与迈克尔逊实验非常相似,但是他没有得出结果。
爱因斯坦说:他最初考虑这个问题时,正是学生时代,当时他已经知道了迈克尔逊实验的奇妙结果,他很快就得出结论:如果相信迈克尔逊的零结果,那么关于地球相对以太运动的想法就是错误的。他说道:“这是引导我走向狭义相对论的第一条途径。自那以后,我开始相信,虽然地球围绕太阳转动,但是,地球运动不可能通过任何光学实验探测太阳转动,但是,地球的运动不可能通过任何光学实验探测出来。”
爱因斯坦有机会读了洛伦兹在1895年发表的论文,他讨论并完满解决了u/c的高次项(u为运动物体的速度,c为光速)。然后爱因斯坦试图假定洛伦兹电子方程在真空参照系中有效,也应该在运动物体的参照系中有效,去讲座菲索实验。在那时,爱因斯坦坚信,麦克斯韦-洛伦兹的电动力学方程是正确的。进而这些议程在运动物体参照系中有效的假设导致了光速不变的概念。然而这与经典力学中速度相加原理相违背。
为什么这两个概念互相矛盾。爱因斯坦为了解释它,花了差不多一年的时间试图去修改洛伦兹理论。一个偶然的机会。他在一个朋友的帮助下解决了这一问题。爱因斯坦去问他并交谈讨论了这个困难问题的各个方面,突然爱因斯坦找到了解决所有的困难的办法。他说:“我在五周时间里完成了狭义相对论原理。”
爱因斯坦的理论否定了以太概念,肯定了电磁场是一种独立的、物质存在的特殊形式,并对空间、时间的概念进行了深刻的分析,从而建立了新的时空关系。他1905年的论文被世界公认为第一篇关于相对论的论文,他则是第一位真正的相对论物理学家。
黑洞看这个http://www.hongen.com/art/twdg/cyztm/tc0011.htm
虫洞http://baike.baidu.com/view/1941.htm

收起

狭义相对论及时空扭曲顺便问下黑洞及虫洞 黑洞能扭曲时空吗? 黑洞能使时空扭曲吗? *黑洞能扭曲时空吗黑洞能扭曲时空,它是否能做为时空隧道,进入黑洞经过奇点,从白洞出来,然后是另一个时空?黑洞和虫洞有什么区别~ 宇宙黑洞与白洞联合起来怎样才会时空扭曲 黑洞能使时空扭曲多少?说简单点 利用黑洞引力场可以扭曲时空?如果可以的话,我想把世界扭曲~ 狭义相对论的公式及证明 虫洞是否是时空管道?时空扭曲如何解释?拜托了各位 谢谢 宇宙猜想猜想一:宇宙的结构,宇宙是一个巨型的黑洞,而这个黑洞的内部就是宇宙内部,并且黑洞在不断扩大.其边缘通由于虫洞或时空扭曲通向宇宙中心的黑洞的表面,具体地说就是宇宙在黑 关于时空天文学知识比如时空扭曲啦,黑洞啦,白洞啦、虫洞啦、时空旅行啦之类的 什么是时空扭曲?爱因斯坦把引力解释为时空扭曲.什么是时空扭曲?爱因斯坦把引力解释为时空扭曲.各位大虾谁能给我解释下什么是时空扭曲吗? 在特定的环境下,时空隧道会开启吗?比如超光速,和进入宇宙的时空隧道,黑洞或虫洞 关于虫洞,平行宇宙,时空,黑洞等的书 求“狭义相对论”求问狭义相对论能否说明“某物体超跃光速时能穿越时空” 巨大黑洞会造成空间的强烈扭曲,那么黑洞周围会不会有可能有“时空隧道”的存在? 平行空间、弯曲时空、黑洞虫洞等有关时空的理论科学属于天文学范畴吗顺便说一下天文学主要分支.要最好的、准确答案,你不懂或不完全肯定的就别乱说, 如何才能扭曲时空