为什么宇宙中的星球都是圆的啊?

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/23 06:24:11
为什么宇宙中的星球都是圆的啊?为什么宇宙中的星球都是圆的啊?为什么宇宙中的星球都是圆的啊?因为所有定义成星的天体都在做自传,自传式天体变成椭球型,并且向赤道方向坍缩.至于不自传的天体,多不定义成星,而

为什么宇宙中的星球都是圆的啊?
为什么宇宙中的星球都是圆的啊?

为什么宇宙中的星球都是圆的啊?
因为所有定义成星的天体都在做自传,自传式天体变成椭球型,并且向赤道方向坍缩.至于不自传的天体,多不定义成星,而是星云,彗星之类

因为科学道理吧 我也不知道

每个行星都包含很多物质,例如地球,把它的质量以公斤写出来,就要在6之后加上廿四个零!而在宇宙中,地球只是一颗比较小的行星哩。地球有那么多的物质,引力就很大了,这也是我们站在地面不会飞出太空的原因。既然地面上的所有物质都被地球的引力吸著,地面就很难“起角”,山不可以太高,因为地球的引力要把山峰的物质拉向地心,所以地球就很圆了。月球的质量只有地球的八十分之一,所以月球的引力比地球小很多,月球上的山就比...

全部展开

每个行星都包含很多物质,例如地球,把它的质量以公斤写出来,就要在6之后加上廿四个零!而在宇宙中,地球只是一颗比较小的行星哩。地球有那么多的物质,引力就很大了,这也是我们站在地面不会飞出太空的原因。既然地面上的所有物质都被地球的引力吸著,地面就很难“起角”,山不可以太高,因为地球的引力要把山峰的物质拉向地心,所以地球就很圆了。月球的质量只有地球的八十分之一,所以月球的引力比地球小很多,月球上的山就比地球的高很多。
依照以上的理论,一颗星球质量愈大便愈圆。相反,若质量很小,引力也小,星体便未必是圆的。事实上,太阳系内除了九大行星外亦有很多质量很小的小行星,它们的形状不甚规则,就如一块大石的模样。
引力场的等势面是球面,例如一个引力足够巨大的星球,如果它的表面各点并非处于同一个等势面的话,势能不均等,引力也不等,那么它是不稳定的,必将变形成为同一个等势面为止(相当于水往低流、山崩),才会稳定下来

收起

是因为万有引力的作用

对,是因为万有引力的作用,因为引力的等势面是球面,所以在星体自身引力占优的情况下,星体自然就会成为球形的。


最佳答案肉眼可见6973颗
天文望远镜因为在不断发展就不好说了
实际上总数多少没人知道
对我们常人来说,浩瀚无垠的宇宙几乎是不可度量的。而对天文学家来说,精确地测绘宇宙天体不仅是必要的,而且也是可能的。天文学采用的计量单位是“光年”,即光在一年里所走的距离。光的前进速度约为每秒30万公里,一光年大约是 9.7万亿公里。银河系的直径约为10万光年。而在银河系之外还...

全部展开


最佳答案肉眼可见6973颗
天文望远镜因为在不断发展就不好说了
实际上总数多少没人知道
对我们常人来说,浩瀚无垠的宇宙几乎是不可度量的。而对天文学家来说,精确地测绘宇宙天体不仅是必要的,而且也是可能的。天文学采用的计量单位是“光年”,即光在一年里所走的距离。光的前进速度约为每秒30万公里,一光年大约是 9.7万亿公里。银河系的直径约为10万光年。而在银河系之外还有别的星系,距离我们有数十亿光年。最新发现的类星体位于我们目前所能观测到的宇宙边缘,与地球相隔约100亿~200亿光年,是迄今所知的最遥远的天体。
如此遥远的距离简直令人难以想象。要测量太阳系的其他行星或附近的恒星的距离,可以采用由古希腊人发明的视差计算法。所谓视差,是指从两个观察位置观察同一物体时两道视线所形成的夹角。在天文学中,测定视差的方法就是把两个观测点与被观测的天体构成一个三角形,已知两个观测点连线(即基线)的长度,再从这两个观测点测出天体的方位(即三角形的顶角),就能求出天体与地球的距离。基线越长,求得的结果就越精确。通常,在测量离地球较近的天体如月亮的距离时,可以用地球的半径作基线,所测定的视差则称为“周日视差”。如果要测定太阳系以外天体的距离,一般都以地球与太阳的距离为基线,所测定的视差称为“周年视差”。用这种视差法测量相距8.6光年以内的天体非常准确,测量远至1000光年的天体也能做到大体准确。
另一种测量恒星距离的方法是亮度测定法。一颗恒星可能因体积大、运动活跃或距离地球较近而显得很光亮。只要分清星球的实际亮度和视觉亮度,就能从光亮度上准确测出恒星与地球之间的距离。本世纪初,天文学家按波长区分星球光亮,制成了光谱。他们发现,不同的恒星有不同的光谱特性。用分光镜研究恒星的光谱,就能判断该星的冷热程度。这有助于天文学家辨别貌似暗淡的小星是否遥远的活跃的巨星。只要把一颗星的光与另一颗已知距离、活跃程度相似的星进行比较,就能测量出这颗星与地球之间的距离。
80多年前,大多数天文学家都认为银河系就是整个宇宙,银河系之外什么也没有。可是,当精确度更高的天文望远镜诞生以后,这种看法便被证明是错误的。过去观测到的那些暗淡模糊的斑点,其实是其他的星系,有的与银河系不相上下,有的则更庞大。20世纪20年代,美国天文学家埃德温·哈勃在加利福尼亚州的威尔逊山用当时世界上最大的反射式望远镜研究银河系外星系,他分析了这些星系的光谱,发现各种谱线的波长都移向红色一端。这种现象叫做红移,说明那些星系正在向远处飞离。波长的改变是多普勒效应的作用,与疾驶而去的汽车喇叭声调的变化同样道理。由于宇宙在不断膨胀,星系距我们越远,红移就越大。换而言之,越远的星系,其飞离我们的速度也越快。哈勃据此提出了“哈勃定律”,确定了计算行星运行速度的天文学计量单位——“哈勃常数”。但是,用哈勃常数作为测量尺度存在一个问题,即无人知道它有多长。
关于宇宙膨胀的速率,天文学家们的看法并不一致。最保守的估计是,距离增加百万光年,则速度每秒钟约增加16公里,即一个距我们5亿光年的星系将以每秒约8047公里的速度远离地球。有些天文学家估计的速率比这个数字还要大一倍。按照第一种估计,宇宙中最遥远的天体距离地球约有100亿光年。而按第二种速率计算,则宇宙边缘距离地球达200亿光年之遥。
“哈勃常数”只能在太阳系以外的太空里测定。在那里,膨胀速度非常大,任何局部影响都变得微不足道。
如果天文学家能够找到一支“标准蜡烛”,即某个类星体,其亮度稳定,非常明亮,横跨半个宇宙都可以看到,那么这个问题便可迎刃而解。但是迄今为止,大家公认可通用于整个宇宙的“标准蜡烛”尚未找到。因此,天文学家运用这一基本方法时往往采取一种分步方式,这就是设立一系列“标准蜡烛”,每一步只起测,定下一步的作用

收起