计量经济学 求一份 EViews软件做的多元线性回归模型 要有数据和表格结果分析要有原始数据,用EViews 3.1做的,多元线性回归模型案例,结果要带有分析的.是计量经济学案例
来源:学生作业帮助网 编辑:六六作业网 时间:2024/11/21 21:09:14
计量经济学 求一份 EViews软件做的多元线性回归模型 要有数据和表格结果分析要有原始数据,用EViews 3.1做的,多元线性回归模型案例,结果要带有分析的.是计量经济学案例
计量经济学 求一份 EViews软件做的多元线性回归模型 要有数据和表格结果分析
要有原始数据,用EViews 3.1做的,多元线性回归模型案例,结果要带有分析的.是计量经济学案例
计量经济学 求一份 EViews软件做的多元线性回归模型 要有数据和表格结果分析要有原始数据,用EViews 3.1做的,多元线性回归模型案例,结果要带有分析的.是计量经济学案例
应用计量经济学综合实验报告
一、观察序列特征
(一)变量的描述统计
变量的描述统计表
X
Y
Mean
24.19133
38.51823
Median
24.60819
35.06598
Maximum
31.51318
59.66837
Minimum
12.28087
24.88616
Std. Dev.
4.378617
9.715057
Skewness
-0.857323
0.890026
Kurtosis
3.169629
2.605577
Jarque-Bera
17.81273
19.94491
Probability
0.000136
0.000047
Sum
3483.552
5546.625
Sum Sq. Dev.
2741.637
13496.67
Observations
144
144
(二)变量的趋势分析
1、各变量的时间序列图
2、根据时序图大致判断变量的平稳性
答:不平稳
(三)双变量分析
1、画出XY散点图
2、计算变量X和Y间的相关系数
Dependent Variable: Y
Method: Least Squares
Date: 10/19/12 Time: 16:31
Sample (adjusted): 1 144
Included observations: 144 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
X
1.531880
0.042949
35.66763
0.0000
R-squared
-0.700579
Mean dependent var
38.51823
Adjusted R-squared
-0.700579
S.D. dependent var
9.715057
S.E. of regression
12.66904
Akaike info criterion
7.923120
Sum squared resid
22952.15
Schwarz criterion
7.943743
Log likelihood
-569.4646
Durbin-Watson stat
0.028629
二、计量经济学分析
(一)X和Y的单整阶数检验(选择适当的检验模型并说明理由,报告结果及结论)
X的一阶单整检验:
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(X(-1))
-1.097771
0.071696
-15.31146
0.0000
C
0.161673
0.153431
1.053718
0.2933
@TREND(1)
-0.001153
0.001339
-0.861117
0.3902
趋势项不显著,改选模型二;
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(X(-1))
-1.094074
0.071520
-15.29752
0.0000
C
0.046755
0.075656
0.617991
0.5373
截距项不显著,改选模型一;
Lag Length: 0 (Automatic based on SIC, MAXLAG=14)
t-Statistic
Prob.*
Augmented Dickey-Fuller test statistic
-15.30936
0.0000
Test critical values:
1% level
-2.576814
5% level
-1.942456
10% level
-1.615622
根据ADF检验值可知,ADF值小于各个显著水平下的临界值,故应拒绝原假设,认为没有单位根,是平稳序列.故X是一阶单整序列;
Y的一阶单整检验:
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(Y(-1))
-0.934141
0.072131
-12.95060
0.0000
C
-0.055176
0.193160
-0.285650
0.7755
@TREND(1)
0.001979
0.001693
1.169003
0.2438
趋势项不显著,改选模型二;
Included observations: 196 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
D(Y(-1))
-0.927506
0.071975
-12.88644
0.0000
C
0.140769
0.096086
1.465030
0.1445
截距项不显著,改选模型一;
Lag Length: 0 (Automatic based on SIC, MAXLAG=14)
t-Statistic
Prob.*
Augmented Dickey-Fuller test statistic
-12.76596
0.0000
Test critical values:
1% level
-2.576814
5% level
-1.942456
10% level
-1.615622
根据ADF检验值可知,ADF值小于各个显著水平下的临界值,故应拒绝原假设,认为没有单位根,是平稳序列.故Y是一阶单整序列;
综上所述,X与Y都是一阶单整序列
(二)用Y,X,常数项,以及Y的滞后一期值建立二元回归模型
1、用OLS估计模型Y=b0+b1X+b2Y-1+m,回归结果如下:
Variable
Coefficient
Std. Error
t-Statistic
Prob.
X
0.013866
0.015102
0.918190
0.3597
C
-0.190932
0.521862
-0.365867
0.7149
Y(-1)
1.001264
0.011224
89.20662
0.0000
2、检验和改进
(1)统计检验和结论(t检验,F检验)
用t检验: P(x)>α,不显著
P(C)>α,不显著
PY(-1)> α,显著
用f检验:P(f)