宇宙大爆炸是怎样的?

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/28 11:22:45
宇宙大爆炸是怎样的?宇宙大爆炸是怎样的?宇宙大爆炸是怎样的?宇宙大爆炸理论所有的天体都有其诞生和发展变化至直衰亡的历史.按天体物理学家的论断,宇宙空间也是在一次灾变中降生的,在一次绝无仅有的大爆炸中“

宇宙大爆炸是怎样的?
宇宙大爆炸是怎样的?

宇宙大爆炸是怎样的?
宇宙大爆炸理论
所有的天体都有其诞生和发展变化至直衰亡的历史.按天体物理学家的论断,宇宙空间也是在一次灾变中降生的,在一次绝无仅有的大爆炸中“诞生”的.
在大爆炸时刻,宇宙的体积是零,所以其温度是无限热的.大爆炸开始后,随着宇宙的膨胀,辐射的温度随之降低.大爆炸1秒钟之后,温度降低到了100亿度,这个温度是太阳中心的1千倍.此时的宇宙中主要包含光子、电子、中微子和它们的反粒子(光子的反粒子就是它本身),以及少量的质子和中子.此时粒子的能量极高,它们相互碰撞并产生大量不同种类的正反粒子对.这些正反粒子对碰到一起时又会湮灭.但此时它们的产生率远大于湮灭率.
顺便一提的是,中微子和反中微子之间以及它们和其它粒子之间的相互作用非常微弱,所以它们并没有互相湮灭掉,以致于直到今天它们仍然存在.中微子的质量被认为是零,但1981年前苏联和1998、1999年日本的研究显示,中微子可能具有微小的质量.如果被证实的话,有助于我们间接地探测到它们.它们是“暗物质”的一种形式,具有足够的引力去阻止宇宙的膨胀并使其坍缩.
宇宙继续膨胀,温度的降低使得粒子不再具有如此高的能量.它们开始结合.与此同时,大部分正反电子相互湮灭,并产生了更多的光子.大爆炸100秒后,温度降到了10亿度,这相当于最热的恒星的内部温度.质子和中子由于强相互作用力(核力)而结合.一个质子和一个中子组成氚核(重氢);氚核再和一个质子和一个中子形成氦核.根据计算,大约有四分之一的质子和中子转变为氦核,以及少量更重元素,如锂和铍.其余的中子衰变为质子,也就是氢核.
几个钟头之后氦和其它元素的产生停止下来.在这之后的100万年左右,宇宙什么也没有发生,只是膨胀.当温度降低到了几千度时,电子和原子核不能再抵抗彼此间相互的吸引力而结合成原子.由于宇宙存在着小范围的不均匀,区域性的坍缩开始发生.其中一些区域在区域外物体引力的作用下开始缓慢的旋转.当坍缩的区域逐渐缩小,由于角动量的守恒,它自转的速度就逐渐加快.当区域变得足够小时,自转的速度足以平衡引力的作用,象我们银河系这样的碟状星系就诞生了.另外一些区域由于没有得到旋转而形成椭圆形星系.这种星系的整体不发生旋转,但它的个别部分稳定地绕着它的中心旋转,因而也能平衡引力坍缩.
由于星系中的星云仍有不均匀性,它们被分割为更小的星云,并进一步收缩形成恒星.恒星由于引力坍缩产生的高温引发核聚变,聚变产生的能量又抵抗了继续收缩的趋势,恒星进入稳定地燃烧.质量越大的恒星燃烧的越快,因为它需要释放更多的能量才能平衡自身更强的引力.它们甚至会在1亿年这样短的时间里耗尽自己的燃料.
恒星有时会发生被称为“超新星”的巨大喷发,这种喷发令其它一切恒星都显得黯淡无光.这时一些恒星在晚期产生的重元素就会被抛回到星系中,并成为下一代恒星的原料.我们的太阳就是第二或第三代恒星,它含有大约2%的这种重元素.还有少量的重元素聚集并形成了绕恒星公转的行星,我们的地球也是其中之一.
对于宇宙的起源,我们仍然有很多问题:第一、为什么宇宙在大尺度如此的均匀?背景辐射的温度也一样?除非宇宙的不同区域刚好从同样的温度开始!第二、又为什么我们的宇宙会以如此接近临界的速率膨胀?如果它在大爆炸后1秒钟的时刻其膨胀速率只要小十亿亿分之一,那么我们的宇宙早以坍缩!第三、我们的宇宙非常光滑和规则,而从概率上来讲,紊乱的和无规则宇宙的数量应该占绝对优势,因为宇宙初始状态的选择是随机的.我们为何恰巧遇到这样渺茫的几率呢?
为了解释这些现象,麻省理工学院的学者阿伦·固斯提出了“暴涨宇宙模型”.他认为,早期的宇宙不是象现在这样以递减的速率膨胀,而是存在着一个快速膨胀的时期,宇宙的加速度膨胀使其半径在远远小于1秒钟的时间里增大了100万亿亿亿(1的后面跟30个0)倍.
固斯认为,大爆炸的状态是非常热和相当紊乱的.这些高温表明宇宙中的粒子具有极高的能量.在如此的高温下,强相互作用力、弱相互作用力和电磁力都被统一成为一个力;当宇宙膨胀并变冷,力之间的对称性由于粒子能量降低而被破坏,强力、弱力和电磁力变得彼此不同.这就好象液态水在各个方向上性质都相同,而结冰形成晶体后,就变成了各向异性,水的对称性在低能态被破坏了.
当宇宙暴涨时,它所有的不规则性都被抹平,就如同吹涨一个气球时,它上面的皱摺都被抹平一样.
暴涨模型还能解释为什么宇宙中存在着这么多物质.在量子理论里,粒子可以从“粒子——反粒子对”的形式从能量中创生出来.这些粒子和反粒子具有正能量,而这些粒子的质量产生的引力场具有负能量(因为靠得较近的物体比分开得较远的物体能量低),宇宙的总 能量为零,这保证了能量守恒不被破坏.零的倍数仍然为零,在暴涨时期宇宙体积急剧加倍的过程中,可以制造粒子的总能量变得非常之大,以致于我们的宇宙现在大约拥有1亿亿亿亿亿亿亿亿亿亿(1后面跟80个零)个粒子.固斯是这样形容这件事的:“宇宙是最彻底的免费午餐!”

“砰”的一响

大爆炸理论
大爆炸理论(Big Bang‎)是宇宙物理学关于宇宙起源的理论。根据大爆炸理论,宇宙是在大约140亿年前由一个密度极大且温度极高的状态演变而来的。本理论产生于观测到的哈勃定律下星系远离的速度,同时根据广义相对论的弗里德曼模型,宇宙空间可能膨胀。延伸到过去,这些观测结果显示宇宙是从一个起始状态膨胀而来。在这个起始状态中,宇宙的物质和能量的温度和密度极高。至于在此之前发...

全部展开

大爆炸理论
大爆炸理论(Big Bang‎)是宇宙物理学关于宇宙起源的理论。根据大爆炸理论,宇宙是在大约140亿年前由一个密度极大且温度极高的状态演变而来的。本理论产生于观测到的哈勃定律下星系远离的速度,同时根据广义相对论的弗里德曼模型,宇宙空间可能膨胀。延伸到过去,这些观测结果显示宇宙是从一个起始状态膨胀而来。在这个起始状态中,宇宙的物质和能量的温度和密度极高。至于在此之前发生了什么,广义相对论认为有一个引力奇点,但物理学家对此意见并不统一。
大爆炸一词在狭义上是指宇宙形成最初一段时间所经历的剧烈变化,这段时间通过计算大概在距今137亿(1.37 × 1010)年前;但在广义上指当今流行的揭示宇宙起源和膨胀的理论。这一理论的直接推论是我们今天所处的宇宙同昨天或者明天的宇宙不同。根据这一理论,乔治·伽莫夫在1948年预测了宇宙微波背景辐射的存在。1960年代,这一辐射被探测到,有力地支持了大爆炸理论,从而否定了另一个比较流行的稳恒态宇宙理论。
目录
1 发展历史
2 理论
3 证据
3.1 哈柏定律和宇宙膨胀
3.2 宇宙微波背景辐射
3.3 原始物质丰度
3.4 星系演变和分布
4 疑点和反对意见
5 这意味着怎样的未来?
6 哲学和宗教意义
7 外部链接

发展历史
大爆炸理论是通过实验观测和理论推导发展的,在实验观测方面,1910年代,维斯特·斯里弗尔(Vesto Slipher)和卡尔·韦海姆·怀兹(Carl Wilhelm Wirtz)证实了大多数旋涡星云正在退离地球,不过他们并没有因此联想到这对宇宙学意味着什么,也不认为发现的星云其实是银河系外的其他星系。同时在理论上,爱因斯坦的广义相对论成功建立并推出没有稳定态宇宙。通过度量张量描述的宇宙不是膨胀就是收缩,爱因斯坦认为他自己解错了,并加入了一个宇宙学常数来进行改正。第一个不使用宇宙学常数,而真正认真将广义相对论运用到宇宙学中的是亚历山大·弗里德曼,他的方程所描述的宇宙称为Friedmann-Lemaître-Robertson-Walker宇宙,时间是1922年。1927年,比利时天主教牧师勒梅特独立推导出Friedmann-Lemaître-Robertson-Walker方程,并在螺旋星云后退现象的基础上提出了宇宙是从一个“初级原子”“爆炸”而来的—这就是后来所谓的大爆炸。
1929年,爱德文·哈勃为勒梅特的理论提供了实验条件。哈柏证明这些旋涡星云其实是星系,并通过观测造父变星测算出了他们的距离。他发现,星系远离地球的速度同它们与地球之间的距离刚好成正比,这就是所谓哈勃定律。根据宇宙学的原理,当观测足够大的空间时,没有特殊方向和特殊点,因此哈勃定律说明宇宙在膨胀。这一观点存在两种互相对立的可能性:一种是由勒梅特提出,盖莫夫支持和完善的大爆炸理论;另一种则是霍伊尔的稳恒态宇宙模型。在稳恒态宇宙模型里,新物质在星系远离留下的空间中不断产生,从而宇宙基本不变化。其实这个理论的名称是出于霍伊尔的讽刺,他在1949年通过BBC广播节目形式传播的,论文《物质的特性》(The Nature of Things)发表于1950年。
之后的许多年,这两种理论并立,但观测事实开始支持一个演变于热密状态的宇宙。1965年宇宙微波背景辐射的发现使人们认为大爆炸理论是宇宙起源和演变最好的理论。1970年以前,很多宇宙学家认为宇宙可能在膨胀以前先收缩,这样可以避免从弗里德曼模型推出一个无限致密的“荒谬”的奇点。比较有代表性的是Richard Tolman的脉动宇宙模型(oscillating universe)。1960年代末,史蒂芬·霍金等人证明这个假设行不通,因为奇异点是爱因斯坦引力理论的直接和重要推论。之后大多数宇宙物理学家开始接受广义相对论所描述的宇宙在时间上是有限的。但是,由于对于量子引力规律缺乏认识,现在还不能断定这个奇异点到底是真正集合意义上的无限小点,还是物理收缩过程可以无限进行下去,从而间接达到宇宙在时间上无限。
现在宇宙物理学的几乎所有研究都与宇宙大爆炸理论有关,或者是它的延伸,或者是进一步解释,例如大爆炸理论下星系如何产生,大爆炸时发生的物理过程,以及用大爆炸理论解释新观测结果等。90年代后期和二十一世纪初,由于望远镜技术的发展和人造探测器收集到大量数据,大爆炸理论又有了新的巨大突破。大爆炸时期宇宙的情况和数据可以计算得更加精确,并产生了很多意想不到的结果,比如宇宙的膨胀在加速。参阅暗能量
理论
大爆炸理论测算出宇宙的年龄是137±2亿年,这一计算是通过对Ia型超新星的观测,对宇宙背景辐射强度的测量,以及对星系相关函数的测量得出的。这三个独立测算所得到的结果一致,从而被认为是所谓更详细描述宇宙中星系性质的Lambda-CDM model的有力证据。早期的宇宙充满了同源同性的物质,其温度压强能量都极高。随着膨胀和冷却,宇宙物质经历了相变,这种相变与蒸气冷却时的凝结过程和水的凝固过程相似,不同之处在于前者发生在更基本的粒子层面上。
普朗克时期之后大约10 − 35秒,相转变引起宇宙产生指数级增长,称为暴胀。之后暴胀停止,此时宇宙的物质形式是夸克-胶子等离子体(同时也具有其他粒子,例如可能含有最近实验发现的夸克-胶子液体),这些物质的运动都符合相对论。宇宙继续在空间上膨胀,温度继续下降。在某一温度下,一种至今未知的所谓重子相变的相变产生,夸克和胶子组成重子,就是质子和中子,同时还在物质和反物质之间产生了不对称性,这种不对称性已经被实验证实。随着温度进一步降低,更多无对称的相变发生,形成了现在的基本粒子和基本相互作用。之后,一些质子和中子结合,组成氘和氦的原子核,这个过程叫做大爆炸核合成。随着宇宙的冷却,物质不再依照相对论理论运动,而静止质量的能量密度以引力形式存在,并超过辐射形式的能量密度。在大约30万年之后,电子和原子核结合成为原子(主要是氢原子),而物质通过脱耦发出辐射并在宇宙空间中相对自由的传播,这就是今天的宇宙微波背景辐射。
随着时间的前进,在几乎是均匀分布的物质空间中,密度稍微大一点儿的区域通过引力作用吸引附近的物质,从而变得密度更大,并形成今天的气体云、恒星、星系和其他天文学观测到的结构。具体过程决定于宇宙物质的形式和数量,其中形式可能有三种:冷暗物质、热暗物质和重子物质。
证据
一般来说,大爆炸宇宙学理论有三个观测基础:
星系红移为基础的哈柏膨胀;
宇宙微波背景的细致测量;
轻物质丰度(参见大爆炸核合成(Big Bang nucleosynthesis))。
另外,观测到的宇宙大尺度结构的相关函数符合标准大爆炸理论。
哈柏定律和宇宙膨胀
参见哈柏定律。
宇宙微波背景辐射
参见宇宙微波背景辐射。
原始物质丰度
参见大爆炸核合成。
星系演变和分布
参见宇宙大尺度结构。
疑点和反对意见
宇宙大爆炸理论在其发展的过程中产生了一些疑点和问题,其中有些随着观测和理论的不断完善得到了解决,而成为了历史,但也有一些问题至今没有圆满解决,诸如银晕尖点问题(Cuspy halo problem)、冷暗物质的矮星系问题(dwarf galaxy problem)等。有些人认为这些问题并不是大爆炸理论的致命问题,通过大爆炸理论的进一步发展可以得到解决。
大爆炸理论的主要疑点和问题有:
视野问题(horizon problem);
均匀度问题(flatness problem);
磁单极问题(Magnetic monopoles);
重子不对称(Baryon asymmetry);
球状星云的年龄(Globular cluster age);
暗物质;
暗能量。
这意味着怎样的未来?
在发现暗能量之前,宇宙学家认为宇宙有两种未来。如果宇宙物质密度超过临界密度,宇宙会在膨胀到最大体积之后收缩,在收缩过程中,宇宙的密度和温度都会再次升高,最后终结于同爆炸开始相似的状态——一个致密致热的小球。或者如果宇宙物质密度等于或者小于临界密度,膨胀会逐渐减速,但永远不会停止。造星运动会随宇宙密度减小而逐渐停止,而宇宙的温度会趋近于绝对零度。黑洞被气化,宇宙的熵会增加到极点,再也不会有有组织的能量形式产生,这叫做热寂说。如果质子衰变存在,宇宙最后甚至连氢原子这种最基本最多的重子物质都会消失,而只剩下辐射。
但现在在发现宇宙加速膨胀之后,人们有了新的推测:现今可观测的宇宙将离开我们的事件视界而同我们失去联系,最终结果还不清楚。Lambda-CDM model宇宙模型认为宇宙的暗能量以宇宙常数形式存在,并提出只有诸如星系等重力支配系统的物质会聚集,从而同样推出宇宙膨胀和冷却到最后将是热寂说。对暗能量的其他解释,例如幻影能量理论(phantom energy)则认为星系群甚至星系都会在大分离过程中被“撕”开。
参见宇宙最终归宿(Ultimate fate of the universe)
哲学和宗教意义
哲学上,有一些对大爆炸理论诠释完全主观和超越科学。一些诠释企图解释大爆炸的原因(第一因),被自然主义的哲学家批评为现代的世界起源神话。一些人相信大爆炸理论支持传统的世界起源观点,譬如在创世记所载的,另一些人认为所有大爆炸理论都与传统观点不合。
大爆炸理论本身是纯粹的科学理论,不与宗教关连。一些基本教义派的诠释与大爆炸理论所描述的宇宙历史不相符合,但较接近于自由派的诠释则没有冲突。
以下是不同宗教对大爆炸理论的诠释:
道教的《道德经》中有“道生一,一生二,二生三,三生万物。万物负阴而抱阳,冲气以为和”(42章)的语句。这可以解释为“道”即宇宙,开始于“一”个奇异点,之后生出正反物质(“二”),从而产生了构成万物的质子、电子和中子。 万物都是由于正反粒子相互作用而通过大爆炸的形式产生的。
佛教中宇宙的概念没有起始点。但是大爆炸理论并不与其观念相矛盾,因为在大爆炸理论基础上可以假设一个永恒的宇宙,例如不少禅宗哲学家对脉动宇宙特别感兴趣。
一些伊斯兰教学者认为《可兰经》关于宇宙起源问题的内容与大爆炸理论相符合:“不相信的人不是看到在我们分开天堂和地球之前,它们是相连并一起被创造出来吗?”(Do not the unbelievers see that the heavens and the earth were joined together as one unit of creation, before We clove them asunder?)(21章30节)而且可兰经还描述了一个膨胀的宇宙:“我们用能力建造天堂,我们也正在扩大它。”(The heaven, We have built it with power. And verily, We are expanding it)(51章47节)。在可兰经里还发现有同宇宙大收缩以及脉动宇宙相符合的经文:“如同我们开始创造天堂一样,当有一天我们像卷起书卷一样卷起天堂的时候,我们会再造它。这是一个承诺,一定会这样的。”(On the day when We will roll up the heavens like the rolling up of the scroll for writings, as We originated the first creation, (so) We shall reproduce it; a promise (binding on Us); surely We will bring it about.)(21章104节)
一些基督教教会,包括罗马天主教教会已经接受大爆炸理论,把它作为哲学上宇宙起源的一种描述。庇护十二世教皇对推广大爆炸理论很热心,尽管当时的理论并不完善。

收起

好的

大爆炸模型认为,最初的宇宙是超高温、高密度的“一点。”大约180亿年前,这“一点”突然爆炸了,仅用10-36秒,伴随着真空相转移的过冷却现象,“一点”了瞬间几十个数量级的膨胀,成为一厘米规模的宇宙。其后宇宙继续膨胀,温度从几十亿摄氏度开始下降,大约在5500万摄氏度时,由降温过程的能量,生成中子、质子,它们又合成原子核,这些过程仅有3分钟。约30万年后当宇宙的温度下降到3000摄氏度时,自由电子被...

全部展开

大爆炸模型认为,最初的宇宙是超高温、高密度的“一点。”大约180亿年前,这“一点”突然爆炸了,仅用10-36秒,伴随着真空相转移的过冷却现象,“一点”了瞬间几十个数量级的膨胀,成为一厘米规模的宇宙。其后宇宙继续膨胀,温度从几十亿摄氏度开始下降,大约在5500万摄氏度时,由降温过程的能量,生成中子、质子,它们又合成原子核,这些过程仅有3分钟。约30万年后当宇宙的温度下降到3000摄氏度时,自由电子被原子核捕捉形成原子。在随后的大约3000万年中那些原子继续向外膨胀。宇宙也继续冷却,到宇宙温度降至绝对零度之上167度时,原子开始化合形成稀薄气体。此后因密度波动、引力作用等开始向新的天体进化。再经过100多亿年,显示出多种多样的物质形态, 成了今天的宇宙。自从150亿年前的宇宙大爆炸之后,星体和各星系一直各自向外飞散。理论上讲,相互维系的重力应该减慢这个膨胀的速度,但是事实并非如此,实际上膨胀还在加速进行。美国普林斯顿大学的斯坦哈特说,宇宙无始、无终,一次次宇宙大爆炸将会永不止息,不断发生。

收起

宇宙大爆炸理论
所有的天体都有其诞生和发展变化至直衰亡的历史。按天体物理学家的论断,宇宙空间也是在一次灾变中降生的,在一次绝无仅有的大爆炸中“诞生”的。
在大爆炸时刻,宇宙的体积是零,所以其温度是无限热的。大爆炸开始后,随着宇宙的膨胀,辐射的温度随之降低。大爆炸1秒钟之后,温度降低到了100亿度,这个温度是太阳中心的1千倍。此时的宇宙中主要包含光子、电子、中微子和它...

全部展开

宇宙大爆炸理论
所有的天体都有其诞生和发展变化至直衰亡的历史。按天体物理学家的论断,宇宙空间也是在一次灾变中降生的,在一次绝无仅有的大爆炸中“诞生”的。
在大爆炸时刻,宇宙的体积是零,所以其温度是无限热的。大爆炸开始后,随着宇宙的膨胀,辐射的温度随之降低。大爆炸1秒钟之后,温度降低到了100亿度,这个温度是太阳中心的1千倍。此时的宇宙中主要包含光子、电子、中微子和它们的反粒子(光子的反粒子就是它本身),以及少量的质子和中子。。此时粒子的能量极高,它们相互碰撞并产生大量不同种类的正反粒子对。这些正反粒子对碰到一起时又会湮灭。但此时它们的产生率远大于湮灭率。
顺便一提的是,中微子和反中微子之间以及它们和其它粒子之间的相互作用非常微弱,所以它们并没有互相湮灭掉,以致于直到今天它们仍然存在。中微子的质量被认为是零,但1981年前苏联和1998、1999年日本的研究显示,中微子可能具有微小的质量。如果被证实的话,有助于我们间接地探测到它们。它们是“暗物质”的一种形式,具有足够的引力去阻止宇宙的膨胀并使其坍缩。
宇宙继续膨胀,温度的降低使得粒子不再具有如此高的能量。它们开始结合。与此同时,大部分正反电子相互湮灭,并产生了更多的光子。大爆炸100秒后,温度降到了10亿度,这相当于最热的恒星的内部温度。质子和中子由于强相互作用力(核力)而结合。一个质子和一个中子组成氚核(重氢);氚核再和一个质子和一个中子形成氦核。根据计算,大约有四分之一的质子和中子转变为氦核,以及少量更重元素,如锂和铍。其余的中子衰变为质子,也就是氢核。
几个钟头之后氦和其它元素的产生停止下来。在这之后的100万年左右,宇宙什么也没有发生,只是膨胀。当温度降低到了几千度时,电子和原子核不能再抵抗彼此间相互的吸引力而结合成原子。由于宇宙存在着小范围的不均匀,区域性的坍缩开始发生。其中一些区域在区域外物体引力的作用下开始缓慢的旋转。当坍缩的区域逐渐缩小,由于角动量的守恒,它自转的速度就逐渐加快。当区域变得足够小时,自转的速度足以平衡引力的作用,象我们银河系这样的碟状星系就诞生了。另外一些区域由于没有得到旋转而形成椭圆形星系。这种星系的整体不发生旋转,但它的个别部分稳定地绕着它的中心旋转,因而也能平衡引力坍缩。
由于星系中的星云仍有不均匀性,它们被分割为更小的星云,并进一步收缩形成恒星。恒星由于引力坍缩产生的高温引发核聚变,聚变产生的能量又抵抗了继续收缩的趋势,恒星进入稳定地燃烧。质量越大的恒星燃烧的越快,因为它需要释放更多的能量才能平衡自身更强的引力。它们甚至会在1亿年这样短的时间里耗尽自己的燃料。
恒星有时会发生被称为“超新星”的巨大喷发,这种喷发令其它一切恒星都显得黯淡无光。这时一些恒星在晚期产生的重元素就会被抛回到星系中,并成为下一代恒星的原料。我们的太阳就是第二或第三代恒星,它含有大约2%的这种重元素。还有少量的重元素聚集并形成了绕恒星公转的行星,我们的地球也是其中之一。
对于宇宙的起源,我们仍然有很多问题:第一、为什么宇宙在大尺度如此的均匀?背景辐射的温度也一样?除非宇宙的不同区域刚好从同样的温度开始!第二、又为什么我们的宇宙会以如此接近临界的速率膨胀?如果它在大爆炸后1秒钟的时刻其膨胀速率只要小十亿亿分之一,那么我们的宇宙早以坍缩!第三、我们的宇宙非常光滑和规则,而从概率上来讲,紊乱的和无规则宇宙的数量应该占绝对优势,因为宇宙初始状态的选择是随机的。我们为何恰巧遇到这样渺茫的几率呢?
为了解释这些现象,麻省理工学院的学者阿伦·固斯提出了“暴涨宇宙模型”。他认为,早期的宇宙不是象现在这样以递减的速率膨胀,而是存在着一个快速膨胀的时期,宇宙的加速度膨胀使其半径在远远小于1秒钟的时间里增大了100万亿亿亿(1的后面跟30个0)倍。
固斯认为,大爆炸的状态是非常热和相当紊乱的。这些高温表明宇宙中的粒子具有极高的能量。在如此的高温下,强相互作用力、弱相互作用力和电磁力都被统一成为一个力;当宇宙膨胀并变冷,力之间的对称性由于粒子能量降低而被破坏,强力、弱力和电磁力变得彼此不同。这就好象液态水在各个方向上性质都相同,而结冰形成晶体后,就变成了各向异性,水的对称性在低能态被破坏了。
当宇宙暴涨时,它所有的不规则性都被抹平,就如同吹涨一个气球时,它上面的皱摺都被抹平一样。
暴涨模型还能解释为什么宇宙中存在着这么多物质。在量子理论里,粒子可以从“粒子——反粒子对”的形式从能量中创生出来。这些粒子和反粒子具有正能量,而这些粒子的质量产生的引力场具有负能量(因为靠得较近的物体比分开得较远的物体能量低),宇宙的总 能量为零,这保证了能量守恒不被破坏。零的倍数仍然为零,在暴涨时期宇宙体积急剧加倍的过程中,可以制造粒子的总能量变得非常之大,以致于我们的宇宙现在大约拥有1亿亿亿亿亿亿亿亿亿亿(1后面跟80个零)个粒子。固斯是这样形容这件事的:“宇宙是最彻底的免费午餐!”

宇宙形成之初的景象
梦想家 ( 99/11/1,10:18 )
我们往往以为,要看到过去,就必须乞灵于时光隧道旅行。其实,这是误由于光的传递需要时间,所以只要在晚上仰望穹苍,那么所见从远距离来的星光就已经是过去的景象。例如银河系核心离太阳大约3万光年,因此目前所见的银核光谱是在3 万年前,亦即新石器时代出现之前的情况;同样,距离为5,000万光年的M87星云在望远镜中所显示的,则是5,000万年前,即远在人类出现之前,甚至非洲和南美洲大陆板块还未分离之时的景象。两年之前,我们曾在本栏报导,对一个约16亿光年之遥的星云的观测显示,在16亿年前宇宙的背景温度高达7.4 K,远远超过目前银河系附近的2.7 K。
宇宙从「大爆炸」(the big bang)形成至今,年龄估计约130亿年左右。那么有没有可能观察更遥远,譬如说100亿光年以外(亦即100亿年以前)的天体,以测定宇宙混沌初开之时的景象呢?以沙弗(P.A.Shaver)为首的一组英国天文学家最近证实,“类星体”在远距离开始变得稀少,到了相当于宇宙年龄6.5%左右那么远的距离,它就根本不存在了。类星体是星云互相碰撞或者星云核心塌缩而产生的异常规象,因此必须先有星云才会有类星体出现。但早期宇宙是一个高密度而相对均匀的质球,它需要相当时间才会由于微细的密度涨落和重力作用而产生空间不均匀结构,亦即前星云结构。所以,在宇宙早期类星体不可能存在。沙弗的研究结果,多少从实际观测上证验了这一构想。
其实,在过去二十年间,已经有不少这一方面的工作,但都受到下列问题困扰:远方星云(包括类星体)以极高径向速度运动,且速度与距离成正比——这就是由于大爆炸而造成所谓宇宙膨胀。这径向速度造成了星云光谱的红移(见方块中的解释),但那同时又使得星云所发的光变为红光,从而论弥漫在星云之间的微尘吸收。因此,见不到极遥远的类星体很可能是由于上述吸收作用造成,而并非其不存在。
沙弗等人解决这个问题的关键在于:大部分类星体会同时发出可见光和无线电波,可见光的红移程度是测定距离所必须的,但它可能被微尘吸收,而无线电波却不会被吸收。因此,倘若能为每一个可能是类星体的无线电源找到相应的可见光源,并且由是确定其距离,那么就可以有信心确定最远的类星体距离有类星体(quasars)是1968年发现的特异天体。令人惊诧的是,它亮度(luminosity,即每秒所发出的幅射能量)极高,相当于甚至超过整个星云(每一星云包含10的9次方至10的11次方颗星)。亮度是这样推算的:由于类星体的谱线显示了极高的红移系数z,由是可以推断它有极高的后退速度;但根据哈勃定律,星体的距离与后退速度成正比,因而又可以推知它有极远的距离,并且因而可以从它的表观(apparent)亮度算出它的惊人本有(intrinsic)亮度。另一方面,类星体显示出极迅速的闪烁。也就是说,它可以在几秒钟之内,大幅改变亮度。由于合它表面任何两点产生同步变化的讯号不能快过光速,所以又可以从它闪烁的特徵时间估计它表面直径的上限。这样,就发现类星体的表面积远小于星云,只和一颗恒星相若。其所以称为类星体,就是由于其亮度近于星云,大小则像恒星,所以无从简单判断其性质和构造。
类星体的本质,曾经今天文学家长期感到迷惑。现在他们多少趋向于同意,类星体是所谓活跃星云的核心,亦即是由于星云相撞或者其中心由于重力塌缩而形成巨大黑洞之后,又不断吸人大量物质所造成的现象。类星体是宇宙进化的产物,所以它出现的高峰,集中在宇宙目前年龄大约20%,亦即宇宙形成之后大约25忆年的时代。在这之后(也就是说,在较接近太阳的距离)类星体密度大大减少,那是早已研究清楚的;至于在此之前类星体密度的减少,则是本文讨论的题目。多远和属于甚么年代,而不必担心由于微尘的吸收而有所遗漏了。这一需要有系统和大量高度精密观测的工作,正就是沙弗小组最近完成的。
他们首先将整个南半球天空所有已知具有类星体无线电波谱型的射电源加以精确定位,然后在其位置一一寻找到了相应的可见光源,并且辨明这些光源的形态、红移程度和距离。这样所得结果是:最遥远的类星体的红移系数是z = 4.46,那说明它发光的时间离宇宙形成之初只有89亿年,亦即目前宇宙年龄的6.5%左右。在更远的距离(相当于z>5和更早的年代)尽管还有许多其他发光星体,但具有其特殊无线电谱型的类星体则并不存在。由是证明,早期宇宙是没有发射强无线电波的类星体的。他们并且认为,有理由相信同样结果还适用于所有类星体。
倘若这一结论可以站得住脚的话,那未我们对星云开始形成的年代也得到了一个估计,即不迟于大爆炸之后8.9亿年。

再现宇宙诞生
在纽约长岛的沙林深处,物理学家正准备进行一项返回宇宙诞生那一刻的实验。今年5月,物理学家埋藏在美国能源部布鲁克黑文国家实验室内的“时间机器”将开始把黄金原子内的电子分隔出来,并把它们加速至光速的99.995%,然后将一对对的原子猛力撞击在一起,撞击力度之大足以产生比太阳酷热1万倍的气温。但这些都不会构成危险,因为每次撞击所产生的总能量只像蚊子降落到屏风般大小。
科学家们相信,第一批原子约在宇宙诞生后一秒钟才出现,因此把它们撕开来就会重新创造宇宙诞生前的状况。物理学家可以想象得到那个领域,有如一个高温的小粒状等离子体大锅,里面既不存在原子,也没有质子和中子。参与这次研究的耶鲁大学物理学家哈里斯称:“我们希望能制造出小粒状等离子体,然后切实地去探索及了解它的特性。”
(摘自《科学美国人》2000年1月号)

大爆炸理论:拼凑起来的故事?
[美国《纽约时报》3月8日文章]题:从前有个大爆炸理论
曾几何时。有个似乎十分简单的设想,即宇宙始于一次大爆炸。
宇宙诞生的故事慢慢拼凑起来。“大爆炸”方程式甚至还可以用于预测宇宙历史早期形成的质量较轻元素(氢、氢和锂)的相对数量。而且“大爆炸”理论还与观测结果十分吻合,这真是不可思议。
但是这种理论上的乐园已经难有好日子过了。最近几年,“大爆炸”理论不能自圆其说的问题接踵而来,宇宙不再那么循规蹈矩了。
最新打击
最新的打击是上个月出现的。人们长期以来一直认为,星系彼此之间的引力与宇宙扩张相抗衡,向心引力刚好与离心张力形成平衡,使宇宙得到控制。理论学家们看到2月27日一期的《科学》杂志时肯定会深感震惊,因为这期杂志报告了宇宙在加膨胀的证据,这表明存在某种尚无法解释的与引力作用相反的斥力。
虽然还未成定论,但是它却是理论学家一直绞尽脑汁要弄明白的一系列惊人结论中最新出现的一个。由于天文学家们的观测工具越来越灵敏,所以就必须不断往原始的“大爆炸”理论中塞进一个又一个用心良苦的假设——先是宇宙诞生大爆炸之后随即出现过短暂的“膨胀期”、存在大量看不见并无法解释的“暗物质”,现在则可能是正使宇宙加速扩张的某种神秘的东西。
理论起源
爱因斯坦是最先模模糊糊领悟到后来称为“大爆炸”的人之一,他对这种设想深恶痛绝。1917年,他意识到他的广义相对论意味着宇宙或者在收缩,或者在膨胀。他给他的方程增加了一个项,后来称之为宇宙常数,这是一个附加因素,可以使宇宙体积的变化忽略不计。
后来,天文学家们收集到了确凿的证据,表明星系的确在膨胀,离开地球的距离以及彼此间的距离越来越远。爱因斯坦因此有个著名的论断,认为其宇宙常数是他的“最大错误”。
“大爆炸”理论几乎从问世以来就一直命运多舛。
通过间接测量星系之间的距离以及星系漂移的速度,著名天文学家埃德温·哈勃得出结论认为,宇宙大爆炸距今已有20亿年历史了。但是地质学家利用铀衰变为铅的速度却计算出地球本身的年龄为40亿年。
这一矛盾很快得到了解决。星系的移动速度是根据星系光线红移量测定的,这有点像远去的轮船汽笛声,音量急剧下降。对星系距离的测量甚至就更不确切了。人们不得不进行这样的推理,即如果能够在某个天体附近并一览无余地盯着看的话,该天体的亮度该有多大。通过将这种假设的固有亮度与实际上抵达地球的光线亮度相比较,我们就能估算出该天体与地球之间的距离了。直到1965年前后,该理论的拥护者还没有怀疑者多,当时天文学家阿尔诺·彭齐亚斯和罗伯特·威尔逊发现了无处不在的背景辐射,这是最初大爆炸留下的余光。再加上对最初大爆炸后形成丰富轻元素的预言得到验证,大爆炸理论似乎可以盖棺定论了。
不断修正
但并不是所有事情都能得到解 释。例如,为什么无论在哪里出现 的背景辐射都有完全一样的温度 呢?这种吻合似乎过于完美,而显得不真实自然。还有更令人不可思议的,那就是宇宙匪夷所思的形状。一个“封闭”的宇宙是弯曲的,所以宇宙万物最终会崩溃。而一个“开放”的宇宙则将无限扩张。但是无论如何,我们自己的宇宙似乎是“平的”,介乎这两者之间。
除非存在宽厚仁慈的独裁者,否则宇宙中一切怎么能够如此和谐呢?
1979年时出现了一个答案,当时物理学家艾伦·古思提出了—个假设,认为在最初大爆炸之后,宇宙紧接着进入超高速疯狂扩张期,宇宙体积成倍成倍地膨胀。该膨胀期只持续远远不到一秒钟的刹那间。但是计算结果表明,这就足以使辐射变得均匀,并使弯曲展平——消除了大爆炸留下的波纹,于是又恢复了宇宙常数。
但是宇宙学家们随后又开始感到不安了,因为宇宙辐射过于均匀;这表明宇宙最初是均质单一的,后来莫名其妙地演化成我们今天所见到的不规则的宇宙,中间点缀着恒星、星系和巨大星系团。要想让这么多的物质凝结起来,似乎宇宙的年龄还不够大,引力也不够强。于是就出现了另一次修正。宇宙学家们已经发现,理论上存在的暗物质可以让“大爆炸”理论自圆其说。如果宇宙中存在足够多的这种看不见的物质,那么这种物质就可以产生额外的引力,促使形成巨型结构。
“大爆炸”理论变得不再简单明了,现在甚至似乎变得越来越复杂了。
以正在发生爆炸的恒星超新星作为测量距离的信标(因为可以用超新星闪烁的速度来估计它们的实际亮度),天文学家们最近几周很不清愿地得出这样一个结论,即宇宙可能正在莫名其妙地加速扩张。
还可能出现这样的情况,光学错觉让天文学家看走了眼。与此同时,理论学家们又在忙着修补漏洞了。

美专家最新测量结果表明 宇宙大爆炸理论需要修正

新华社今日上午专电 美国科学家对银河系中央区域氘元素含量的最新测量结果表明,目前的宇宙大爆炸理论标准模型可能需要一些修正。
美国物理研究所的唐·路博维希等科学家在新一期英国《自然》杂志上报告说,他们研究了距银河系中心仅32光年的射手座星云的光谱,结果发现氘的丰度比按照大爆炸理论标准模型计算出的结果高出约10万倍。
科学家对这些氘的来历进行了多种猜测。例如,如果在过去数十亿年里银河系中央曾经存在过一个类星体,它消亡后会留下大量氘元素。或者在宇宙射线的作用下,碳等重元素会崩解产生氘。但计算表明,类星体残留的氘应当比现在多得多,而银河系中央区域的宇宙射线密集程度又不足以使碳产生这么多氘。这样,就只剩下一种解释,即这些氘是从银河系外部区域跌落到银河系中央的,它们产
生于宇宙刚刚诞生后不久。新测量结果表明,宇宙大爆炸理论参数需要修正。

收起

大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。
理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为开宇宙;要...

全部展开

大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。
理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为开宇宙;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为闭宇宙。
问题似乎变得很简单,但实则不然。理论计算得出的临界密度为5×10-30克/厘米3。但要测定宇宙中物质平均密度就不那么容易了。星系间存在广袤的星系间空间,如果把目前所观测到的全部发光物质的质量平摊到整个宇宙空间,那么,平均密度就只有2×10-31克/厘米3,远远低于上述临界密度。
然而,种种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素。因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题。不过,就目前来看,开宇宙的可能性大一些。
恒星演化到晚期,会把一部分物质(气体)抛入星际空间,而这些气体又可用来形成下一代恒星。这一过程会使气体越耗越少,以致最后再没有新的恒星可以形成。1014年后,所有恒星都会失去光辉,宇宙也就变暗。同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大。
1017~1018年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定。当宇宙到1024岁时,质子开始衰变为光子和各种轻子。1032岁时,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞。
10100年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逸出,并最终完全消失,宇宙将归于一片黑暗。这也许就是开宇宙末日到来时的景象,但它仍然在不断地、缓慢地膨胀着。
闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小。如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,当宇宙半径扩大到目前的2倍左右时,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩。
以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演。收缩几百亿年后,宇宙的平均密度又大致回到目前的状态,不过,原来星系远离地球的退行运动将代之以向地球接近的运动。再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密,收缩也越来越快。
在坍缩过程中,星系会彼此并合,恒星间碰撞频繁。一旦宇宙温度上升到4000开,电子就从原子中游离出来;温度达到几百万度时,所有中子和质子从原子核中挣脱出来。很快,宇宙进入“大暴缩”阶段,一切物质和辐射极其迅速地被吞进一个密度无限高、空间无限小的区域,回复到大爆炸发生时的状态。
如果宇宙真的是大爆炸产生的,目前的平均密度是对的,依照现在的理论是可以测出来的,这个值大约在150亿到200亿光年,而现在观测到的最远距离是美国观测到的150亿光年。 霍金无边界条件的量子宇宙论
霍金在1982年提出了一种既自洽又自足的量子宇宙论。在这个理论中,宇宙中的一切在原则上都可以单独地由物理定律预言出来,而宇宙本身是从无中生有而来的。这个理论建立在量子理论的基础之上,涉及到量子引力论等多种知识。
在他的理论中,宇宙的诞生是从一个欧氏空间向洛氏时空的量子转变,这就实现了宇宙的无中生有的思想。这个欧氏空间是一个四维球。在四维球转变成洛氏时空的最初阶段,时空是可由德西特度规来近似描述的暴涨阶段。然后膨胀减缓,再接着由大爆炸模型来描写。这个宇宙模型中空间是有限的,但没有边界,被称作封闭的宇宙模型。
从霍金提出这个理论之后,几乎所有的量子宇宙学研究都是围绕着这个模型展开。这是因为它的理论框架只对封闭宇宙有效。
如果人们不特意对空间引入人为的拓扑结构,则宇宙空间究竟是有限无界的封闭型,还是无限无界的开放型,取决于当今宇宙中的物质密度产生的引力是否足以使宇宙的现有膨胀减缓,以至于使宇宙停止膨胀,最后再收缩回去。这是关系到宇宙是否会重新坍缩或者无限膨胀下去的生死攸关的问题。
可惜迄今的天文观测,包括可见的物质以及由星系动力学推断的不可见物质,其密度总和仍然不及使宇宙停止膨胀的1/10。不管将来进一步的努力是否能观测到更多的物质,无限膨胀下去的开放宇宙的可能性仍然呈现在人们面前。
可以想象,许多人曾尝试将霍金的封闭宇宙的量子论推广到开放的情形,但始终未能成功。今年2月5日,霍金及图鲁克在他们的新论文“没有假真空的开放暴涨”中才部分实现了这个愿望。他仍然利用四维球的欧氏空间,由于四维球具有最高的对称性,在进行解析开拓时,也可以得到以开放的三维双曲面为空间截面的宇宙。这个三维双曲面空间遵循爱因斯坦方程继续演化下去,宇宙就不会重新收缩,这样的演化是一种有始无终的过程。
物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往 称作可观 测宇宙 、我们 的宇宙 ,现在 相当于天文学中的“总星系”。
词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间 ,与“宇宙”概念最接近。
在西方 ,宇宙这个词在英语中叫 cosmos ,在俄语中叫кocMoc ,在德语中叫 kosmos , 在法语中叫 cosmos 。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示 “宇宙”的词是 universe 。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上 , universitas 又指一切现成的东西所构成的统一 整体,那就是universe,即宇宙。universe 和cosmos常 常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。
宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的 。 公元前 7 世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央则是高山。古埃及人把宇宙 想 象成以天为盒盖 、大地为盒 底的大盒子,大地的中央则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前 7 世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。
最早认识到大地是 球 形的是古希腊人 。公元前 6 世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F.麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。
公元2世纪,C.托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的中央安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N.哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J.开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,G.伽利略则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I.牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。
在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,G.布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E.哈雷对恒星自行的发展和J.布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T.赖特、I.康德和J.H.朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。F.W.赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H.沙普利发现了太阳不在银河系中心、J.H.奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。
18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由E.P.哈勃用造父视差法