文本分类和聚类有什么区别

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/25 05:04:48
文本分类和聚类有什么区别文本分类和聚类有什么区别文本分类和聚类有什么区别聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技术.分类和聚

文本分类和聚类有什么区别
文本分类和聚类有什么区别

文本分类和聚类有什么区别
聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技术.分类和聚类都是将相似对象归类的过程.区别是,分类是事先定义好类别,类别数不变.分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴.聚类则没有事先预定的类别,类别数不确定.聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成.分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等.
  分类(classification )是找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类.分类技术在数据挖掘中是一项重要任务,目前商业上应用最多.分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个类中.
  要构造分类器,需要有一个训练样本数据集作为输入.训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记.一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别.分类器的构造方法有统计方法、机器学习方法、神经网络方法等等.
  不同的分类器有不同的特点.有三种分类器评价或比较尺度:1)预测准确度;2)计算复杂度;3)模型描述的简洁度.预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务.计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据,因此空间和时间的复杂度问题将是非常重要的一个环节.对于描述型的分类任务,模型描述越简洁越受欢迎.
  另外要注意的是,分类的效果一般和数据的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的.目前普遍认为不存在某种方法能适合于各种特点的数据
  聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组.其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示.聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题.