各类转座子的转座机理

来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/18 21:37:30
各类转座子的转座机理各类转座子的转座机理各类转座子的转座机理转座因子或转座子是一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子.一段DNA顺序可以从原位上单独复制或断裂下来,环化后插入

各类转座子的转座机理
各类转座子的转座机理

各类转座子的转座机理
转座因子或转座子是一类在很多后生动物中(包括线虫、昆虫和人)发现的可移动的遗传因子.
一段DNA顺序可以从原位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用,此过程称转座.这段序列称跳跃基因或转座子,可分插入序列(Is因子),转座(Tn),转座phage.
转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列.
转拙子是存在于染色体DNA上可自主复制和位移的基本单位.最简单的转座子不含又任何宿主基因而常被称为插入序列(IS),它们是细菌染色体或质粒DNA的正常组成部分
转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置.
复合型的转座因子称为转座子(trans—poson,Tn).这种转座因子带有同转座无关的一些基因,它的两端就是IS,构成了“左臂”和“右臂”.两个“臂”可以是正向重复,也可以是反向重复.这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座.
转座子是细菌细胞里发现的一种复合型转座因子,这种转座因子带有同转座无关的一些基因,如抗药性基因;它的两端就是IS,构成了“左臂”和“右臂”.两个“臂”可以是正向重复,也可以是反向重复.这种复合型的转座因子称为转座子(trans—poson,Tn).这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座.Tn两端的IS有的是完全相同的,有的则有差别.当两端的IS完全相同时,每一个IS都可使转座子转座;当两端是不同的IS时,则转座子的转座取决于其中的一个IS.Tn有抗生素的抗性基因,Tn很容易从细菌染色体转座到噬菌体基因组或是接合型的质粒.因此,Tn可以很快地传播到其他细菌细胞,这是自然界中细菌产生抗药性的重要来源.
两个相邻的IS可以使处于它们中间的DNA移动,同时也可制造出新的转座子.Tn10的两端是两个取向相反的IS1O,中间有抗四环素的抗性基因(TetR),当TnlO整合在一个环状DNA分子中间时,就可以产生新的转座子.当转座子转座插人宿主DNA时,在插入处产生正向重复序列,其过程是这样的:先是在靶DNA插入处产生交错的切口,使靶DNA产生两个突出的单链末端,然后转座子同单链连接,留下的缺口补平,最后就在转座子插入处生成了宿主DNA的正向重复.已知的转座因子的转座途径有两种:复制转座和非复制转座.
1.复制转座(replicative transposition) 转座因子在转座期间先复制一份拷贝,而后拷贝转座到新的位置,在原先的位置上仍然保留原来的转座因子.复制转座有转座酶(transposase)和解离酶(resolvase)的参与.转座酶作用于原来的转座因子的末端,解离酶则作用于复制的拷贝.TnA是复制转座的例子.
2.非复制转座(non-replicative transposition) 转座因子直接从原来位置上转座插入新的位置,并留在插入位置上,这种转座只需转座酶的作用.非复制转座的结果是在原来的位置上丢失了转座因子,而在插入位置上增加了转座因子.这可造成表型的变化.
保留转座(conservative transposition)也是非复制转座的一种类型.其特点是转座因子的切离和插人类似于入噬菌体的整合作用,所用的转座酶也是属于入整合酶(integrase)家族.出现这种转座的转座因子都比较大,而且转座的往往不只是转座因子自身,而是连同宿主的一部分DNA一起转座. 非复制转座可以是直接从供体分子的转座子两端产生双链断裂,使整个转座子释放出来,然后在受体分子上产生的交错接口处插入,这是“切割与黏接”(“cut and paste")的方式.另一种方式是在转座子分子同受体分子之间形成一种交换结构(crossover structure),受体分子上产生交错的单链缺口,与酶切后产生的转座子单链游离末端连接,并在插入位点上产生正向重复序列;最 后,由此生成的交换结构经产生缺口(nick)而使转座子转座在受体分子.供体DNA分子上留下双链断裂,结果 或是供体分子被降解,或是被DNA修复系统识别而得到修复.
在复制转座过程中,转座和切离是两个独立事件.先是由转座酶分别切割转座子的供体和受体DNA分子.转座子的末端与受体DNA分子连接,并将转座子复制一份拷贝,由此生成的中间体即共整合体(cointegrat,)有转座子的两份拷贝.然后在转座子的两份拷贝间发生类似同源重组的反应,在解离酶的作用下,供体分子同受体分子分开,并且各带一份转座子拷贝.同时受体分子的靶位点序列也重复了一份拷贝.
酵母接合型的相互转换也是复制转座所产生.酿酒酵母(Saccharomvcescerf—visiae)的生命周期中有双倍体细胞和单倍体细胞两种类型.单倍体细胞则有a型和α型两种接合型(mating type).单倍体酵母是a型还是α型,由单个基因座MAT所决定.MAT有一对等位基因MAT.和MATα,在同宗接合(homothallic)的酵母菌株中,酵母菌十分频繁地转换其接合型,即从a转换成α,然后在下一代又转换为a.这种转换和回复的频率已远远高于通常的自发突变,表明这不是通常的突变机制.现在已经知道,在MAT基因座两侧有两个基因带有MATα和ATα的拷贝,这就是HMLα和HMRα基因.这两个基因贮存了两种接合型等位基因,当转座给MAT基因座时就发生了接合型的转换.因此,MAT基因座是通过转座而转换其接合型的.MAT基因座的序列转换成另一个基因的序列,这种机制称为基因转换(gene convertion).