Matlab中Random Forest算法是怎么结束的

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/11 19:40:09
Matlab中RandomForest算法是怎么结束的Matlab中RandomForest算法是怎么结束的Matlab中RandomForest算法是怎么结束的Irecentlyusetherand

Matlab中Random Forest算法是怎么结束的
Matlab中Random Forest算法是怎么结束的

Matlab中Random Forest算法是怎么结束的
I recently use the random forest to classify the traffical sigh .And the number of the training subset feature of traffical sigh is 39210,the number of the test subset feature is 12630.When I impletment the code in Windows-Precompiled-RF_MexStandalone-v0.02- as follows:
X=importdata('F:\硕士论文\GTSRB\Random Forest\RF_Class_C\Train_HOG2_LDAData_noLabel_41dim.txt');
Y=importdata('F:\硕士论文\GTSRB\Random Forest\RF_Class_C\Train_HOG2_LabelData.txt');
ntree=400;
model=classRF_train(X,Y,ntree);
But if I set the parameter ntree more than 300 ,for instance ntree set to 400,it will appear the case represented below:
Error using ==> mexClassRF_train
Out of memory. Type HELP MEMORY for your options.
Error in ==> classRF_train at 347
[nrnodes,ntree,xbestsplit,classwt,cutoff,treemap,nodestatus,nodeclass,bestvar,ndbigtree,mtry ...
Error in ==> Untitled at 13
model=classRF_train(X,Y,ntree);
I would like to ask why this error occur ?