关于人类受到的启发

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/11 08:29:16
关于人类受到的启发关于人类受到的启发关于人类受到的启发动物给人的启发乌龟背小乌龟:转动炮塔的坦克.鸟在天空飞翔:制造了各种飞行器.蜜蜂造巢窝:各种正六边形的蜂巢结构板材.每只蜻蜓的翅膀末端,都有一块比

关于人类受到的启发
关于人类受到的启发

关于人类受到的启发
动物给人的启发
乌龟背小乌龟:转动炮塔的坦克.
鸟在天空飞翔:制造了各种飞行器.
蜜蜂造巢窝:各种正六边形的蜂巢结构板材.
每只蜻蜓的翅膀末端,都有一块比周围略重一些的厚斑点,这就是防止翅膀颤抖的关键.飞机设计师研究苍蝇、蚊子、蜜蜂等的飞行方法,造出了许多具有各种优良性能的新式飞机.
鲸:外形是一种极为理想的“流线体”,而“流线体”在水中受到的阻力是最小的.后来工程师模仿(fǎng)鲸的形体,改进了船体的设计,大大提高了轮船舴的速度.
蛋壳:能够把受到的压力均匀(yún)地分散到蛋壳的各个部分.建筑师根据这种“薄壳结构”的特点,设计出许多既轻便又省料的建筑物.
袋鼠:会跳跃的越野汽车,
贝壳:外壳坚固的坦克……
鱼儿在水中游荡:学会了游泳,发明潜艇.
连体鲨鱼装:第一代鲨鱼装模仿了鲨鱼的皮肤,在泳衣上设计了一些粗糙的齿状突起,以有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动.第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%.此外,还增加了两个附件,附在前臂上由钛硅树脂做成的缓冲器能使运动员游起来更加轻松;附在胸前和肩后的振动控制系统能帮助引导水流.
让盲者见到光明:在植入了微小的仿生视网膜之后,3位失明患者不仅看到了明灭或者移动的光点,甚至还成功地用眼睛区别出杯子和盘子.
人工合成蛛丝:蛛丝含有一种纤维蛋白,这种蛋白质和存在于毛发和羊角中的角质蛋白相似.这种蛋白分泌出来后开始变得坚韧.通过精细的平衡水的含量,蜘蛛和蚕可以防止纤维蛋白过快固化.
运动方向识别的神经元功能模拟装置
自动报靶机
平板型复眼透镜
侧抑制微光电视
蜻蜓-飞机;
顺风耳-电话;
青蛙—快速扫描系统
苍蝇-气味探测器
螳螂—镰刀
苍蝇与宇宙飞船
苍蝇嗅觉器:小型气体分析仪.
从萤火虫到人工冷光 .由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作.
电鱼与伏特电池.经过对电鱼的解剖研究,发现在电鱼体内有一种奇特的发电器官.意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池.
水母耳朵:水母耳风暴预测仪,相当精确地模拟
仿 生 学
仿生学是研究生物系统的结构和性质以为工程技术提供新的设计思想及工作原理的科学.
仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios”(生命方式的意思)和字尾“nlc”(“具有……的性质”的意思)构成的.他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”.尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志.
仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等.
力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质.例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷.军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;
分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等.例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;
能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程;
信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程.例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度.根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置.已建立的神经元模型达100种以上,并在此基础上构造出新型计算机.
模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别.此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面.
某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生.
仿生学的范围很广,信息与控制仿生是一个主要领域.一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战.人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面.
控制与信息仿生和生物控制论关系密切.两者都研究生物系统中的控制和信息过程,都运用生物系统的模型.但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释.
最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点.其目的不在于直接复制每一个细节,而是要理解生物系统的工作原理,以实现特定功能为中心目的.—般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型.前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁.
由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因.