英语翻译[]内的数字不用理会跟在句子后面就行.A key aspect of nanotechnology is that quantum confinementeffects evident in low-dimensional materials can giverise to unique and unusual optical,electronic and catalyticproperties.[2] In
来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/03 12:24:40
英语翻译[]内的数字不用理会跟在句子后面就行.A key aspect of nanotechnology is that quantum confinementeffects evident in low-dimensional materials can giverise to unique and unusual optical,electronic and catalyticproperties.[2] In
英语翻译
[]内的数字不用理会跟在句子后面就行.
A key aspect of nanotechnology is that quantum confinement
effects evident in low-dimensional materials can give
rise to unique and unusual optical,electronic and catalytic
properties.[2] In particular,with many semiconductor materials
there is a strong correlation between their optical properties
and their size.As the size of a semiconductor is reduced
the electronic excitations in the material shift to higher
energies,and the oscillator strength is concentrated into just a
few discrete transitions.These basic phenomena of quantum
confinement arise as a result of changes in the density of
electronic states as is shown in Figure 1.Excellent examples of
size-dependent discrete optical transitions exist for clusters of
direct band-gap semiconductors,such as CdSe[2,3] and InAs.[4]
These unique size-dependent properties may afford innovative
electronic,optical and sensor applications.For example,
the discovery of visible luminescence from nanocrystalline
silicon has led to an explosion of interest in this material for
potential opto-electronic applications.
翻译软件翻译的就算了。
英语翻译[]内的数字不用理会跟在句子后面就行.A key aspect of nanotechnology is that quantum confinementeffects evident in low-dimensional materials can giverise to unique and unusual optical,electronic and catalyticproperties.[2] In
纳米技术的一个重要方面是该量子隔离
能给明显的低维材料的影响
迎接独特而不寻常,光学、 电子及催化
属性时 [2] 在特别,与很多半导体材料
有他们的光学性能强关系
和他们的大小.半导体的大小是减少
材料中的电子激励转移至高
能量和振荡器强度集中到只是一个
几个离散的转换.这些基本的现象的量子
隔离出现因密度的变化
如图 1 所示的电子状态.成功例子
对于群集的大小依赖性离散光学转换存在
直接带隙半导体,如 CdSe [2,3] 和 InAs [4].
这些唯一的大小依赖性属性可能负担创新
电子、 光学和传感器应用程序.例如
从纳米可见发光的发现
硅导致了这种材料的兴趣爆炸
潜在的光电式应用程序.