箱线图怎么分析
来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/22 18:58:06
箱线图怎么分析
箱线图怎么分析
箱线图怎么分析
箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较.
1.直观明了地识别数据批中的异常值
一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机.箱线图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值.虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错.这与识别异常值的经典方法有些不同.众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布.它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%.显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的.箱线图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱线图识别异常值的结果比较客观.由此可见,箱线图在识别异常值方面有一定的优越性.
2.利用箱线图判断数据批的偏态和尾重
比较标准正态分布、不同自由度的t分布和非对称分布数据的箱线图的特征,可以发现:对于标准正态分布的大样本,只有 0.7%的值是异常值,中位数位于上下四分位数的中央,箱线图的方盒关于中位线对称.选取不同自由度的t分布的大样本,代表对称重尾分布,当t分布的自由度越小,尾部越重,就有越大的概率观察到异常值.以卡方分布作为非对称分布的例子进行分析,发现当卡方分布的自由度越小,异常值出现于一侧的概率越大,中位数也越偏离上下四分位数的中心位置,分布偏态性越强.异常值集中在较小值一侧,则分布呈现左偏态;;异常值集中在较大值一侧,则分布呈现右偏态.下表列出了几种分布的样本数据箱线图的特征(样本数据由SAS的随机数生成函数自动生成),验证了上述规律.这个规律揭示了数据批分布偏态和尾重的部分信息,尽管它们不能给出偏态和尾重程度的精确度量,但可作为我们粗略估计的依据.
3.利用箱线图比较几批数据的形状
同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便昭然若揭.在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它群体中处于什么位置,可以通过比较各箱线图的异常值看出.各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了.每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来.还有一些箱线图的变种,使数据批间的比较更加直观明白.例如有一种可变宽度的箱线图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果.如果对同类群体的几批数据的箱线图进行比较,便是常模参照解释方法的可视图示;如果把受测者数据批的箱线图与外在效标数据批的箱线图比较分析,便是效标参照解释的可视图示.箱线图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见.