英语翻译3.1 TrackingMore often than not,the false positive detections from our license plate detector were erratic,and if on the car body,their position was not temporally consistent.We use this fact to our advantage by tracking candidate license

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/27 14:19:55
英语翻译3.1TrackingMoreoftenthannot,thefalsepositivedetectionsfromourlicenseplatedetectorwereerratic,and

英语翻译3.1 TrackingMore often than not,the false positive detections from our license plate detector were erratic,and if on the car body,their position was not temporally consistent.We use this fact to our advantage by tracking candidate license
英语翻译
3.1 Tracking
More often than not,the false positive detections from our license plate detector were erratic,and if on the car body,their position was not temporally consistent.We use this fact to our advantage by tracking candidate license plate regions over as many frames as possible.Then,only those regions with a smooth trajectory are deemed valid.The tracking of license plates also yields a sequence of samplings of the license plate,which can be used as input to a super resolution preprocessing step before OCR is performed on them.
Numerous tracking algorithms exist that could be applied to our problem.Perhaps the most well-known and popular is the Kanade-Lucas-Tomasi (KLT) tracker.The KLT tracker makes use of a Harris corner detector to detect good features to track in a region of interest (our license plate) and measures the similarity of every frame to
the first allowing for an affine transformation.Sullivan etal.make use of a still camera for the purposes of tracking vehicles by defining regions of interest (ROI) chosen to span individual lanes.They initiate tracking when a certain edge characteristic is observed in the ROI and make predictions on future positions of vehicles.Those tracks with a majority of accurate predictions are deemed valid.Okumaet al.use the Viola and Jones framework to detect hockey players and then apply a mixture particle filter using the detections as hypotheses to keep track of the players.
Although each of these tracking methods would probably have worked well in our application,we chose a far simpler approach which worked well in practice.Because detecting license plates is efficient we simply run our detector on each frame and for each detected plate we determine whether that detection is a new plate or an instance of a plate already being tracked.To determine whether a detected plate is new or not,the following conditions are checked:
• the plate is within T pixels of an existing tracker
• the plate is within T` pixels of an existing tracker and the plate is within θ degrees of the general direction of motion of the plates in the tracker’s history
If any of these are true,the plate is added to the corresponding tracker,otherwise a new tracker is created for that plate.In our application T` was an order of magnitude larger than T.Our tracking algorithm was also useful for discarding false positives from the license plate detector.The erratic motion of erroneous detections usually resulted in the initiation of several trackers each of which stored few image sequences.Image sequences of 5 frames or fewer were discarded.
3.2 Character Recognition
It was our initial intent to apply a binarization algorithm,such as a modified version of Niblack’s algorithm as used by Chen and Yuille,on the extracted license plate images from our detector,and then use the binarized image as input to a commercial OCR package.We found,however,that even at a resolution of 104 × 31 the OCR packages we experimented with yielded very poor results.Perhaps this
should not come as a surprise considering the many custom OCR solutions used in existing LPR systems.
谢绝直接使用工具而读起来不通的!

英语翻译3.1 TrackingMore often than not,the false positive detections from our license plate detector were erratic,and if on the car body,their position was not temporally consistent.We use this fact to our advantage by tracking candidate license
3.1跟踪
通常,那些假阳性检测器检测从我们的车牌是无规律,若在汽车车身的时间,他们的情况并不一致.我们用这个事实对我们有利的候选车牌区域跟踪了尽可能多帧.然后,只有那些地区与一个光滑轨迹被认为是有效的.跟踪牌照也产生一个序列的车牌目的,可作为输入一个超级分辨率OCR前进行预处理环节.
存在众多的跟踪算法可以应用到我们的问题.也许最著名和最受欢迎的是Kanade-Lucas-Tomasi(KLT)盈.利用KLT跟踪器的哈里斯角落的检测特点,探测器进行良好的感兴趣区域(我们)和措施车牌每帧的相似性
第一个让仿射变换.沙利文etal.利用还相机为目的,通过定义区域跟踪车辆(ROI)选择感兴趣的跨越各自的跑道.他们倡导当一个边缘特征跟踪观察到投资回报率和预测未来的位置的车辆.那些轨道与大多数准确的预言被认为是有效的.Okumaet王汝成等使用百合和琼斯检测曲棍球运动员框架,然后应用混合使用检测作为粒子滤波跟踪这个假说的球员.
尽管每一种跟踪方法可能会工作得很好我们的申请,我们选择在一个更简单的方法在实践中效果良好.因为是有效的检测车牌简单运行我们的探测器在每一帧和每个侦测我们确定,检测板是一种新型的钢板或实例的板已被追踪.来确定一个检测是新的,板检查下列条件:
在T•盘子的像素的一个现有的盈
在T•平板的像素的一个现有的跟踪和板材在θ度的一般运动的方向该板在历史上的地位
如果这些都是真实的,盘子被添加到相应的跟踪,否则一个算法是为了那盘.在应用软件T”是一个数量级比我们追踪算法T用于丢弃的误报率从车牌侦测器.不稳定的运动检测通常导致错误开始的几个追踪每几个序列图像的存储.5帧图像序列或减少discarded.问题补充:
3.2字符识别
这是我们的初衷,运用一个二值化算法,如修改的版本的算法Niblack使用,陈和Yuille提取车牌图像从我们的探测器,然后使用图像二值作为输入到一个商业OCR技术包裹.我们发现,然而,即使在104年的一项决议,×31 OCR包裹我们尝试取得了很差的结果.也许这
不应该感到惊讶考虑许多定制解决方案应用于现有LPR光学系统.

3.1跟踪
更多的,往往不是从我们的车牌检测假阳性检测是不稳定的,如果在车体上,他们的立场是不是临时一致。通过跟踪我们使用了尽可能多的帧候选车牌区域这对我们有利的事实。那时,只有那些具有平滑轨迹地区被视为有效。跟踪牌的牌也产生出的牌照,可以作为输入到一个超分辨率光学字符识别的预处理步骤之前对它们进行使用的采样序列。
许多跟踪算法存在,可以被应用到我们的问题。也许最知名的和流行的...

全部展开

3.1跟踪
更多的,往往不是从我们的车牌检测假阳性检测是不稳定的,如果在车体上,他们的立场是不是临时一致。通过跟踪我们使用了尽可能多的帧候选车牌区域这对我们有利的事实。那时,只有那些具有平滑轨迹地区被视为有效。跟踪牌的牌也产生出的牌照,可以作为输入到一个超分辨率光学字符识别的预处理步骤之前对它们进行使用的采样序列。
许多跟踪算法存在,可以被应用到我们的问题。也许最知名的和流行的是金出武雄,卢卡斯- Tomasi(康莱特)跟踪。该跟踪器利用一个康莱特Harris角检测器用来检测好的特点来跟踪感兴趣的区域(我们的车牌)和措施每帧的相似性
仿射变换为一首让。沙利文埃塔尔。使一个相机使用的跟踪定义感兴趣区域(ROI)的个人选择跨越车道车辆的目的。他们开始跟踪当某一边缘特征是观察的投资回报率,并就今后的车辆位置的预测。与大多数的准确预测这些轨道被视为有效。 Okumaet等。使用框架,Viola和琼斯检测曲棍球球员,然后应用一个混合粒子过滤器作为假设的检测以保持球员的轨道。
虽然这些跟踪每个方法可能曾在我们的应用程序很好,我们选择了一个更为简单的做法,在实践中工作良好。由于车牌是有效的检测,我们只需要运行我们对每一帧探测器的每个检测到的板块我们确定这是否是一种新的检测板,或者已经被跟踪一盘的实例。要确定是否检测到的板块是新的或没有,检查以下条件:
•板是现有跟踪像素内T
•板是在T`的现有跟踪器和板内的像素的一些板块的运动,在跟踪的历史大方向θ度
如果其中任何一个是真的,该板块添加到相应的跟踪,否则新的跟踪为该板块创建。在我们的应用T`的是一个数量级更大的订单比t我们的追踪算法也从车牌丢弃探测器误报有用。各种错误侦测,通常导致不稳定的运动在几个纤夫每个存储图像序列起始数。 5个或更少的图像序列帧被丢弃。

收起

通常,那些假阳性检测器检测从我们的车牌是无规律,若在汽车车身的时间,他们的情况并不一致。我们用这个事实对我们有利的候选车牌区域跟踪了尽可能多帧。然后,只有那些地区与一个光滑轨迹被认为是有效的。跟踪牌照也产生一个序列的车牌目的,可作为输入一个超级分辨率OCR前进行预处理环节。
存在众多的跟踪算法可以应用到我们的问题。也许最著名和最受欢迎的是Kanade-Lucas-Tomasi(KLT)盈。...

全部展开

通常,那些假阳性检测器检测从我们的车牌是无规律,若在汽车车身的时间,他们的情况并不一致。我们用这个事实对我们有利的候选车牌区域跟踪了尽可能多帧。然后,只有那些地区与一个光滑轨迹被认为是有效的。跟踪牌照也产生一个序列的车牌目的,可作为输入一个超级分辨率OCR前进行预处理环节。
存在众多的跟踪算法可以应用到我们的问题。也许最著名和最受欢迎的是Kanade-Lucas-Tomasi(KLT)盈。 利用KLT跟踪器的哈里斯角落的检测特点,探测器进行良好的感兴趣区域(我们)和措施车牌每帧的相似性
第一个让仿射变换。沙利文etal.利用还相机为目的,通过定义区域跟踪车辆(ROI)选择感兴趣的跨越各自的跑道。他们倡导当一个边缘特征跟踪观察到投资回报率和预测未来的位置的车辆。那些轨道与大多数准确的预言被认为是有效的。Okumaet王汝成等使用百合和琼斯检测曲棍球运动员框架,然后应用混合使用检测作为粒子滤波跟踪这个假说的球员。
尽管每一种跟踪方法可能会工作得很好我们的申请,我们选择在一个更简单的方法在实践中效果良好。因为是有效的检测车牌简单运行我们的探测器在每一帧和每个侦测我们确定,检测板是一种新型的钢板或实例的板已被追踪。来确定一个检测是新的,板检查下列条件:
1、盘子在T像素的一个现有的盈
2、盘子在T的像素的一个现有的跟踪和板材在θ度的一般运动的方向该板在历史上的地位
如果这些都是真实的,盘子被添加到相应的跟踪,否则一个算法是为了那盘。在应用软件T”是一个数量级比我们追踪算法T用于丢弃的误报率从车牌侦测器。不稳定的运动检测通常导致错误开始的几个追踪每几个序列图像的存储。5帧图像序列或减少报废了。
问题补充:
这是我们的初衷,运用一个二值化算法,如修改的版本的算法Niblack使用,陈和Yuille提取车牌图像从我们的探测器,然后使用图像二值作为输入到一个商业OCR技术包裹。我们发现,然而,即使在104年的一项决议,×31 OCR包裹我们尝试取得了很差的结果。也许这
不应该感到惊讶考虑许多定制解决方案应用于现有LPR光学系统。

收起

3.1 追踪
比较时常超过不,我们的牌照发现者的错误的积极发现是不稳定的,而且如果在汽车身体上,他们的位置不是当时一致。我们藉由追踪候选人牌照区域超过和框架一样多如可能的使用对我们有利的这一种事实。然后,不过那些区域用一个平滑的轨道被视为有效的。牌照的追踪也产生在光学符号识别在他们上被运行之前,能被当作对预加工步骤的一个超级决议来说的输入使用的牌照的 samplings 的序列。
...

全部展开

3.1 追踪
比较时常超过不,我们的牌照发现者的错误的积极发现是不稳定的,而且如果在汽车身体上,他们的位置不是当时一致。我们藉由追踪候选人牌照区域超过和框架一样多如可能的使用对我们有利的这一种事实。然后,不过那些区域用一个平滑的轨道被视为有效的。牌照的追踪也产生在光学符号识别在他们上被运行之前,能被当作对预加工步骤的一个超级决议来说的输入使用的牌照的 samplings 的序列。
很多的追踪运算法则存在那可能适用于我们的问题。也许最众所周知而且最流行的是 Kanade-卢卡斯-Tomasi(KLT)追踪者。KLT 追踪者利用哈利斯迫至一隅发现者发现好特征在一个有趣的区域(我们的牌照)追踪而且测量每个框架的类似到
这首先考虑到仿射的变形。为了藉由定义被选择跨越个别的小路的有趣的区域(ROI)追踪车辆的 Sullivan etal.make 一台静止照相机的使用。当特定的优势特性在 ROI 中被观察而且在车辆的将来位置上作预测时,他们开始追踪。那些轨道用多数正确的预测被视为有效的。Okumaet al.use 中提琴和钟斯结构发现曲棍球选手然后应用以发现作为假定的一个混合粒子过滤器掌握运动员的资讯。
虽然每一个这些追踪方法或许在我们的申请中会好好地工作,但是,我们选择在练习中作的很好的更为简单的方法。因为发现牌照是有效率的,我们只是在每个框架上跑我们的发现者而且因为每个发现我们决定的碟子是否发现已经是一个新碟子或碟子的一个例证被追踪。要决定一个被发现的碟子是否很新,下列的情况被检查:
?碟子在一个现有追踪者的 T 图素里面
?碟子在 T 里面现有追踪者的图素和碟子在追踪者历史上的碟子的运动的一般方向的θ程度里面
如果这些之中的任何一个是真实的,碟子被增加对应的追踪者,否则一个新追踪者为那一个碟子被产生。在我们的申请 T 中是一个大小的次序比 T 大。我们的追踪运算法则为了丢弃牌照发现者的错误的实在也是有用的。错误发现的不稳定运动通常造成了每个的一些追踪者的开始哪一个储存了几乎没有图像序列。5个框架的图像序列或较少的被丢弃了。

收起