巨磁电阻是怎么工作的?

来源:学生作业帮助网 编辑:六六作业网 时间:2025/01/13 04:42:35
巨磁电阻是怎么工作的?巨磁电阻是怎么工作的?巨磁电阻是怎么工作的?首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻.所谓巨磁阻就是指在一定的磁

巨磁电阻是怎么工作的?
巨磁电阻是怎么工作的?

巨磁电阻是怎么工作的?
首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻.所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍.
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的.一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又进而被划分为若干个扇区.磁盘片的每个磁盘面都相应有一个数据读出头.  简单地说,当数据读出头“扫描”过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为“0”和“1”,成为所有信息的原始“译码”.  伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术.1988年,费尔和格林贝格尔各自独立发现了“巨磁电阻”效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应.  这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱.借助“巨磁电阻”效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化.  1997年,第一个基于“巨磁电阻”效应的数据读出头问世,并很快引发了硬盘的“大容量、小型化”革命.如今,笔记本电脑、音乐播放器等各类数码电子产品中所装备的硬盘,基本上都应用了“巨磁电阻”效应,这一技术已然成为新的标准.  瑞典皇家科学院的公报介绍说,另外一项发明于上世纪70年代的技术,即制造不同材料的超薄层的技术,使得人们有望制造出只有几个原子厚度的薄层结构.由于数据读出头是由多层不同材料薄膜构成的结构,因而只要在“巨磁电阻”效应依然起作用的尺度范围内,科学家未来将能够进一步缩小硬盘体积,提高硬盘容量

首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻。所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的。一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个...

全部展开

首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻。所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的。一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又进而被划分为若干个扇区。磁盘片的每个磁盘面都相应有一个数据读出头。   简单地说,当数据读出头“扫描”过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为“0”和“1”,成为所有信息的原始“译码”。   伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术。1988年,费尔和格林贝格尔各自独立发现了“巨磁电阻”效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应。   这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。借助“巨磁电阻”效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化。   1997年,第一个基于“巨磁电阻”效应的数据读出头问世,并很快引发了硬盘的“大容量、小型化”革命。如今,笔记本电脑、音乐播放器等各类数码电子产品中所装备的硬盘,基本上都应用了“巨磁电阻”效应,这一技术已然成为新的标准。   瑞典皇家科学院的公报介绍说,另外一项发明于上世纪70年代的技术,即制造不同材料的超薄层的技术,使得人们有望制造出只有几个原子厚度的薄层结构。由于数据读出头是由多层不同材料薄膜构成的结构,因而只要在“巨磁电阻”效应依然起作用的尺度范围内,科学家未来将能够进一步缩小硬盘体积,提高硬盘容量

收起

首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻。所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的。一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个...

全部展开

首先,磁性金属和合金一般都有磁电阻现象,所谓磁电阻是指在一定磁场下电阻改变的现象,人们把这种现象称为磁电阻。所谓巨磁阻就是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。
通常说的硬盘也被称为磁盘,这是因为在硬盘中是利用磁介质来存储信息的。一般而言,在密封的硬盘内腔中有若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又进而被划分为若干个扇区。磁盘片的每个磁盘面都相应有一个数据读出头。   简单地说,当数据读出头“扫描”过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为“0”和“1”,成为所有信息的原始“译码”。   伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术。1988年,费尔和格林贝格尔各自独立发现了“巨磁电阻”效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应。   这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。借助“巨磁电阻”效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化。   1997年,第一个基于“巨磁电阻”效应的数据读出头问世,并很快引发了硬盘的“大容量、小型化”革命。如今,笔记本电脑、音乐播放器等各类数码电子产品中所装备的硬盘,基本上都应用了“巨磁电阻”效应,这一技术已然成为新的标准。   瑞典皇家科学院的公报介绍说,另外一项发明于上世纪70年代的技术,即制造不同材料的超薄层的技术,使得人们有望制造出只有几个原子厚度的薄层结构。由于数据读出头是由多层不同材料薄膜构成的结构,因而只要在“巨磁电阻”效应依然起作用的尺度范围内,科学家未来将能够进一步缩小硬盘体积,提高硬盘容量

收起