英语翻译Predictive Data Mining Driven Architecture toGuide Car Seat Model Parameter InitializationSabbir Ahmed,Ziad Kobti,and Robert D.Kent*Abstract.Researchers in both government and nongovernment organizations areconstantly looking for patterns
来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/24 00:51:13
英语翻译Predictive Data Mining Driven Architecture toGuide Car Seat Model Parameter InitializationSabbir Ahmed,Ziad Kobti,and Robert D.Kent*Abstract.Researchers in both government and nongovernment organizations areconstantly looking for patterns
英语翻译
Predictive Data Mining Driven Architecture to
Guide Car Seat Model Parameter Initialization
Sabbir Ahmed,Ziad Kobti,and Robert D.Kent*
Abstract.Researchers in both government and nongovernment organizations are
constantly looking for patterns among drivers that may influence properuse of car
seats.Such patterns will help them predict behaviours of drivers thatshape their
decision in placing a child in the proper car constraint when traveling inan automobile.
Previous work on a multi-agent based prototype,with the goal to simulate
car seat usage patterns among drivers,has shown good prospects as a toolfor researchers.
In this work we aim at exploring the parameters that initialize the
model.The complexity of the model is driven by a large number ofparameters
and a wide array of values.Existing data from road surveys are examinedusing
existing data mining tools in order to explore beyond basic statisticswhat parameters
and values can be most relevant for a more realistic model run.The intentis to
make the model replicate real world conditions as closely mimicking thesurvey
data as possible.Data mining driven architecture which can dynamicallyuse data
collected from various surveys and agencies in real time can significantlyimprove
the quality and accuracy of the agent-model.
英语翻译Predictive Data Mining Driven Architecture toGuide Car Seat Model Parameter InitializationSabbir Ahmed,Ziad Kobti,and Robert D.Kent*Abstract.Researchers in both government and nongovernment organizations areconstantly looking for patterns
预测数据挖掘驱动架构指导车座椅模型参数初始化
Sabbir Ahmed, Ziad Kobti, and Robert D. Kent*
摘要:政府及非政府组织的研究人员都不断地在驾驶员中寻找可能影响汽车座椅正确使用的模式.这种模式能帮助他们预测驾驶员的行为,这些行为影响了驾驶员的决定,在驾驶时将孩子放在适当的车内约束物中.之前的的研究基于多主体的原型,其目的是模拟驾驶员中的汽车座椅使用模式.该研究对于研究者来讲已经作为工具显示出好的方面.在这个论文中,我们的目的在于开发能形成模型的参数.模型的复杂性由众多参数和许多值驱动.此论文研究了来源于道路调查的现有数据,使用已有的数据挖掘工具来开发基本统计学原理外的对于更加现实的模型的参数和数值.目的在于使模型尽可能真实地重复现实世界的场景.数据挖掘驱动的构架可以动态地使用数据,这些数据实时地来自不同的调查和主体,这可以很大地改善主体模型的质量和精确度.
注:纯手工翻译,手工打字,专八以上水平 望采纳
预测数据挖掘驱动架构引导汽车座椅模型参数初始化的sabbir Ziad柯布帝,艾哈迈德,和罗伯特D.肯特*摘要。研究人员在政府和非政府组织的不断寻找驱动程序可能影响如何恰当地使用carseats图案之间的。这种模式将帮助他们预测在放置一个孩子在适当的车行驶时,汽车司机约束形成theirdecision行为。以前的基于多Agent的工作原型,以simulatecar座椅的使用模式之间的驱动,已显示出...
全部展开
预测数据挖掘驱动架构引导汽车座椅模型参数初始化的sabbir Ziad柯布帝,艾哈迈德,和罗伯特D.肯特*摘要。研究人员在政府和非政府组织的不断寻找驱动程序可能影响如何恰当地使用carseats图案之间的。这种模式将帮助他们预测在放置一个孩子在适当的车行驶时,汽车司机约束形成theirdecision行为。以前的基于多Agent的工作原型,以simulatecar座椅的使用模式之间的驱动,已显示出良好的前景,作为一种工具的研究。本文旨在探索参数初始化模型。模型的复杂性是由大量驱动ofparametersand广泛的价值。道路调查现有的数据examinedusingexisting数据挖掘工具,以探索超越基本statisticswhat参数值可以是最相关的一个更现实的模型运行。该intentis使模型模拟真实世界的条件下尽可能密切模仿thesurveydata。数据挖掘驱动架构可以dynamicallyuse从各种调查和机构在实时收集的数据可以significantlyimprovethe质量和代理模型的准确性。
收起