我想问下卤化烃中的卤原子是什么杂化类型?sp2还是sp1?还有苯胺中的N为什么是sp3杂化?如果是sp3杂化,那么N原子上有1对电子在sp3轨道上,与苯环形成的就不是P-π共轭了,应该叫sp3-π共轭吧?请懂
来源:学生作业帮助网 编辑:六六作业网 时间:2024/12/22 15:47:45
我想问下卤化烃中的卤原子是什么杂化类型?sp2还是sp1?还有苯胺中的N为什么是sp3杂化?如果是sp3杂化,那么N原子上有1对电子在sp3轨道上,与苯环形成的就不是P-π共轭了,应该叫sp3-π共轭吧?请懂
我想问下卤化烃中的卤原子是什么杂化类型?sp2还是sp1?还有苯胺中的N为什么是sp3杂化?如果是sp3杂化,那么N原子上有1对电子在sp3轨道上,与苯环形成的就不是P-π共轭了,应该叫sp3-π共轭吧?请懂的大大解释,不懂得请勿乱发言
我想问下卤化烃中的卤原子是什么杂化类型?sp2还是sp1?还有苯胺中的N为什么是sp3杂化?如果是sp3杂化,那么N原子上有1对电子在sp3轨道上,与苯环形成的就不是P-π共轭了,应该叫sp3-π共轭吧?请懂
非极性分子 原子间以共价键结合,分子里电荷分布均匀,正负电荷中心重合的分子.
如:H2、O2、N2、、CO2、CH4、CH2 'BF3等.
.
分子中正负电荷中心重合,从整个分子来看,电荷分布是均匀的,对称的,这样的分子为非极性分子.分子中各键全部为非极性键时,分子是非极性的(O3除外).当一个分子中各个键完全相同,都为极性键,但分子的构型是对称的,则分子是非极性的.
同种原子组成的双原子分子都是非极性分子.
不是非极性分子的就是极性分子了!
高中阶段知道以下的就够了:
极性分子:HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3CH2OH
非极性分子:Cl2,H2,O2,N2,CO2,CS2,BF3,P4,C2H2,SO3,CH4,CCl4,SiF4,C2H4,C6H6,PCl5,汽油
区分 极性分子 和 非极性分子 的方法
非极性分子的判据:中心原子化合价法和受力分析法
1、中心原子化合价法:
组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5
2、受力分析法:
若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子.如:CO2,C2H4,BF3
3、同种原子组成的双原子分子都是非极性分子.
不是非极性分子的就是极性分子了!
简单判断方法
对于AnBm型 n=1 m1 若A化合价等于主族数 则为非极性
极性分子
分子中正负电荷中心不重合,从整个分子来看,电荷的分布是不均匀的,不对称的,这样的分子为极性分子,以极性键结合的双原子一定为极性分子,以极性键结合的多原子分子
如果分子的构型不对称,则分子为极性分子.
如:氨气分子,HCl分子等.
区分极性分子和非极性分子的方法:
非极性分子的判据:中心原子化合价法和受力分析法
1、中心原子化合价法:
组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5
2、受力分析法:
若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子.如:CO2,C2H4,BF3
3、同种原子组成的双原子分子都是非极性分子.
不是非极性分子的就是极性分子了!
高中阶段知道以下的就够了:
极性分子:HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3CH2OH
非极性分子:Cl2,H2,O2,N2,CO2,CS2,BF3,P4,C2H2,SO3,CH4,CCl4,SiF4,C2H4,C6H6,PCl5,汽油
简单判断方法
对于AnBm型 n=1 m1 若A化合价等于主族数 则为非极性
有机极性判断
有机化合作大多难溶于水,易溶于汽油、苯、酒精等有机溶剂.原因何在?中学课本、大学课本均对此进行了解释.尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂.汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其分子的偶极矩为零,它是一非极性分子.烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等.以烷烃为主要成分的汽油也就不具有极性了. 确切而言,上述说法是不够严格的. 我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的.根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度.
常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D.至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性.带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性.由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D.
烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D.2—丁烷,顺—2—丁烯的μ=0.33D,反—2—丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性. 二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子. 炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分别为0.78D和0.80D. 芳香烃中,苯无极性,甲苯、乙苯有极性,μ分别为0.36D、0.59D;二甲苯中除对一二甲苯外的另两种同分异构体分子不对称,为极性分子,显而易见,三甲苯中之间一三甲苯分子的μ为零,联苯、萘的分子也无极性.
综上所述,烃的分子有无极性仍是取决于各自的对称程度是否将键的极性完全抵消.当某分子并不因其中C—CO键的旋转而引起碳干排布不同的构象时,构型则绝对对称,分子无极性.将其分子中H原子全部用——CH3所替代,分子的偶极矩仍为零.作为以烷烃为主要成分的汽油、石蜡,其中可能含有非极性的分子构象,但从整体来说,同绝大多数烃的分子一样,它们也是具有极性的,只是由于其中C—H键的极性极弱,其偶极矩极小.烃类的偶极矩一般小于1D,在不饱和烃中尚有以Sp2、Sp杂化方式成键的碳原子,键的极性及分子的极性均较相应的饱和键烃强,炔烃的极性较烯烃强. 至于烃的衍生物,常见的除四卤化碳,六卤乙烷、四卤乙烷、对一二卤苯、对一二硝基苯、间一三卤苯等非极性的烃分子中氢原子或—CH3被其它原子或原子团全部或部分以完全对称的方式所取代的产物等少数物质外,多数都具有极性,分子的偶极矩较相应的烃大,一般大于1D.
由此可见,有机物的分子除少数为非极性分子外,大多数是具有极性的.其偶极矩不少还比水大,如一氯甲烷为1.87D、一氯乙浣为2.05D、溴苯为1.70D、乙醛为2.69D、丙酮为2.88D、硝基酸为4.22D、乙醇为16.9D,有机物的极性并不都很弱.当然,与无机物相比较,有机物是弱极性,作为常见的有机物之一的汽油,尽管其主要成分的偶极矩不大,在教学中往往将汽油及烷烃等视为非极性的.但烷有烃等有无极性是个是非问题,在教学中尤其在师范除校化学专业的教学中,不宜进行如此处理而不加任何说明.否则,容易引起学生错觉,往往不加考虑地认为烷及烃的分子都绝对对称的、均无极性,而将问题简单化、绝对化、对本身的业务进修及今后的教学工作都会带来一些不必要的麻烦.所以,不管因为什么原因在教学中至少都必须明确说明有机物的弱极性与非极性的前提是与无机物整体相比较,汽油等物质因主要成分的极性很弱,通常视为非极性.
CH3CI、硝基苯等极性较强,为何它们不溶于水?有些教科书上将相似相溶规律中的相似仅提及溶质、溶剂的极性是很不够的.尽管溶质溶剂极性的相似是其能否相互溶解的一个重要因素,但并不是唯一的.物质的溶解性还取决于它们分子结构、分子间作用力的类型与大小的相似.例如,水和乙醇可以无限制的相互混溶、煤油与乙醇只是有限度地相互溶解,而水和煤油几乎完全不相溶.对于这些事实,如果只从分子极性的角度来考虑是难以令人满意的,但我们可以从分子结构上得到解释.水和乙醇的分子都是由一个一OH与一个小的原子或原子团结合而成,其结构很相似,分子间都能形成氢键,因此能无限制地相互相混.无疑,随着醇分子中烃基的增大,它与水分子结构上的相似程度将降低,醇在水中的溶解度也将随之减小.煤油主要是分子中含有8—16个碳原子的烷烃的混和物,因乙醇分子中含有一个烷烃的烃基,结构上有相似之处,它们能互溶,但乙醇分子中含有一个跟烃基毫不相干的—OH.因此,它们的相互溶解是有一个的限度的.水的分子结构与煤油毫无相似之处,煤油不溶于水、极性较强的CH3CI、溴苯、硝基苯不溶于水也就不奇怪了.至于低分子量的羧、酸、醇、醛、酮等易溶于水,则可以从其分子的极性及其分子与水分子能形成氢键得到解释.由此可见,对于相似相溶这条经验规则的应用,我们应从溶质、溶剂的分子结构、分子间作用力的类型和大小及其偶极矩等多个方面来考虑,忽视哪一点,都可能带来一些不必要的疑惑,这无论在中学还是大学的教学中都应引起足够的重视
卤素不是中心原子,不杂化
苯胺中的氨基就是sp3杂化,记住,而且里面有个离域π键
1.卤化烃中的卤素不杂化。
2.p-π共轭只有在p轨道的成对电子才行,共轭的原因是纺锤形的p电子云和形成大π键的p电子云正好也是并排的肩并肩的模式。而N进行sp3杂化后,杂化就是一个s轨道和3个p轨道重新变成了四个sp3轨道(就是说现在第二层只有四个sp3轨道,没有原来的s轨道和p轨道了)。四个轨道的能级一致化,因此在空间的方向是对称的(类似甲烷四根键的延展方向),另外就是杂化后轨道的电子...
全部展开
1.卤化烃中的卤素不杂化。
2.p-π共轭只有在p轨道的成对电子才行,共轭的原因是纺锤形的p电子云和形成大π键的p电子云正好也是并排的肩并肩的模式。而N进行sp3杂化后,杂化就是一个s轨道和3个p轨道重新变成了四个sp3轨道(就是说现在第二层只有四个sp3轨道,没有原来的s轨道和p轨道了)。四个轨道的能级一致化,因此在空间的方向是对称的(类似甲烷四根键的延展方向),另外就是杂化后轨道的电子云形状也不是本身p电子云那样以原子核为中心对称的形状了。形状和方向都不对,自然无法和本身所连的那个碳的p电子云形成共轭了。
有关杂化轨道,希望你注意一点,就是π键一般只有p电子才能形成。之所以有sp2和sp杂化,是因为剩下的一个或两个p轨道用来形成π键。所以看到双键才能判定是sp2杂化,看到三键才能判定是sp杂化,不然基本都是sp3杂化。
苯胺连着苯环的集团-NH2根本没有双键,所以N肯定是sp3杂化,不可能有多余的p电子云,更不会有p-π共轭了。p-π共轭的p轨道大部分情况来自于不杂化的卤素原子。
另,杂化不杂化,可以根据键角,结构等看出来。我觉得对于这块结构化学你可能不是太熟悉,有机学了后之前的可能忘记了。建议先别太钻,等学深了很多东西自然就知道了。
收起