波 的英文释义急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.

来源:学生作业帮助网 编辑:六六作业网 时间:2024/11/18 02:51:42
波的英文释义急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.波的英文释义急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.波的英文释义急写外文

波 的英文释义急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.
波 的英文释义
急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.

波 的英文释义急写外文演讲稿,需要波得外文文献两篇.波,就是物理概念“波”,英文waves.
What is a Wave?什么是波?
So waves are everywhere. But what makes a wave a wave? What characteristics, properties, or behaviors are shared by the phenomena that we typically characterize as being a wave? How can waves be described in a manner that allows us to understand their basic nature and qualities?
A wave can be described as a disturbance that travels through a medium from one location to another location. Consider a slinky wave as an example of a wave. When the slinky is stretched from end to end and is held at rest, it assumes a natural position known as the equilibrium or rest position. The coils of the slinky naturally assume this position, spaced equally far apart. To introduce a wave into the slinky, the first particle is displaced or moved from its equilibrium or rest position. The particle might be moved upwards or downwards, forwards or backwards; but once moved, it is returned to its original equilibrium or rest position. The act of moving the first coil of the slinky in a given direction and then returning it to its equilibrium position creates a disturbance in the slinky. We can then observe this disturbance moving through the slinky from one end to the other. If the first coil of the slinky is given a single back-and-forth vibration, then we call the observed motion of the disturbance through the slinky a slinky pulse. A pulse is a single disturbance moving through a medium from one location to another location. However, if the first coil of the slinky is continuously and periodically vibrated in a back-and-forth manner, we would observe a repeating disturbance moving within the slinky that endures over some prolonged period of time. The repeating and periodic disturbance that moves through a medium from one location to another is referred to as a wave.
A Wave Transports Energy and Not Matter波传播能量不是介质
When a wave is present in a medium (that is, when there is a disturbance moving through a medium), the individual particles of the medium are only temporarily displaced from their rest position. There is always a force acting upon the particles that restores them to their original position. In a slinky wave, each coil of the slinky ultimately returns to its original position. In a water wave, each molecule of the water ultimately returns to its original position. And in a stadium wave, each fan in the bleacher ultimately returns to its original position. It is for this reason, that a wave is said to involve the movement of a disturbance without the movement of matter. The particles of the medium (water molecules, slinky coils, stadium fans) simply vibrate about a fixed position as the pattern of the disturbance moves from one location to another location.
Waves are said to be an energy transport phenomenon. As a disturbance moves through a medium from one particle to its adjacent particle, energy is being transported from one end of the medium to the other. In a slinky wave, a person imparts energy to the first coil by doing work upon it. The first coil receives a large amount of energy that it subsequently transfers to the second coil. When the first coil returns to its original position, it possesses the same amount of energy as it had before it was displaced. The first coil transferred its energy to the second coil. The second coil then has a large amount of energy that it subsequently transfers to the third coil. When the second coil returns to its original position, it possesses the same amount of energy as it had before it was displaced. The third coil has received the energy of the second coil. This process of energy transfer continues as each coil interacts with its neighbor. In this manner, energy is transported from one end of the slinky to the other, from its source to another location.
This characteristic of a wave as an energy transport phenomenon distinguishes waves from other types of phenomenon. Consider a common phenomenon observed at a softball game - the collision of a bat with a ball. A batter is able to transport energy from her to the softball by means of a bat. The batter applies a force to the bat, thus imparting energy to the bat in the form of kinetic energy. The bat then carries this energy to the softball and transports the energy to the softball upon collision. In this example, a bat is used to transport energy from the player to the softball. However, unlike wave phenomena, this phenomenon involves the transport of matter. The bat must move from its starting location to the contact location in order to transport energy. In a wave phenomenon, energy can move from one location to another, yet the particles of matter in the medium return to their fixed position. A wave transports its energy without transporting matter.
Waves are seen to move through an ocean or lake; yet the water always returns to its rest position. Energy is transported through the medium, yet the water molecules are not transported. Proof of this is the fact that there is still water in the middle of the ocean. The water has not moved from the middle of the ocean to the shore. If we were to observe a gull or duck at rest on the water, it would merely bob up-and-down in a somewhat circular fashion as the disturbance moves through the water. The gull or duck always returns to its original position. The gull or duck is not transported to the shore because the water on which it rests is not transported to the shore. In a water wave, energy is transported without the transport of water.
The same thing can be said about a stadium wave. In a stadium wave, the fans do not get out of their seats and walk around the stadium. We all recognize that it would be silly (and embarrassing) for any fan to even contemplate such a thought. In a stadium wave, each fan rises up and returns to the original seat. The disturbance moves through the stadium, yet the fans are not transported. Waves involve the transport of energy without the transport of matter.
In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter. Each individual particle of the medium is temporarily displaced and then returns to its original equilibrium positioned.

http://www.physicsclassroom.com/class/waves/u10l1b.cfm
这里有

wave